CONTRACT NO. A832-124 FINAL REPORT JANUARY 1992 LIBRARY CALIFORNIA AIR RESOURCES BOARD P.O. BOX 2815 Combustion Sources That Emit Polychlorinated Dioxins and Furans, Polycyclic Aromatic Hydrocarbons, and Other Toxic Compounds State of California AIR RESOURCES BOARD Research Division # Assessment of Combustion Sources That Emit Polychlorinated Dioxins and Furans, Polycyclic Aromatic Hydrocarbons, and Other Toxic Compounds # Final Report Contract No. A832-124 Prepared for: Research Division California Air Resources Board 1800 15th Street Sacramento, CA 95814 Submitted by: Midwest Research Institute 425 Volker Boulevard Kansas City, MO 64410 Prepared by: John M. Hosenfeld Principal Investigator #### **PREFACE** Midwest Research Institute has prepared this document for project requirements of both Phase I and Phase II for the California Air Resources Board (ARB) project "Assessment of Combustion Sources That Emit Polychlorinated Dioxins and Furans, Polycyclic Aromatic Hydrocarbons, and Other Toxic Compounds." This document was prepared by the Engineering and Environmental Technology Department of Midwest Research Institute (MRI) for the ARB, Mr. Ralph Propper, ARB Project Manager, under the direction of Mr. John M. Hosenfeld, MRI Project Leader. Mr. Dan March was the field sampling task leader. Dr. Andrès Romeu and Ms. Marilyn Whitacre were responsible for the semivolatile organics analysis (PCDDs/PCDFs and PAHs), Ms. Eileen McClendon was responsible for the metals analysis. Ms. Pam Murowchick performed the test results calculations and provided the spreadsheets for this report. Mr. Dennis Hooton was the quality assurance coordinator. Additional contributions were made by the following individuals: Mr. Bob Gulick (CEMs sampling and graphs); Mr. Dennis Wallace and Mr. Paul Gorman (technical advisors); Ms. Elizabeth Page and Mr. Greg Maynard (Phase I report). MIDWEST RESEARCH INSTITUTE John M. Hosenfeld Head, Field Measurements Section Approved: Charles F. Holt, Ph.D., Director Engineering and Environmental **Technology Department** January 31, 1992 ## **CONTENTS** | | | | ii | |---------------|----------------|--|------------------| | List of Figur | es | | ٧ | | List of Table | es | | Vi | | Nomenclatu | re | | vii | | 1. | Introduction | | 1-1 | | | 1.1 | Project scope | 1-1 | | | 1.2 | Background discussion | 1-2 | | | 1.3 | References for Section 1 | 1-5 | | 2. | | mary | 2-1 | | 3. | Source Ident | tification and Screening | 3-1 | | _ | 3.1 | Identification of combustion sources | 3-1 | | | 3.2 | Development of questionnaire | 3-1 | | | 3.3 | Collection of source information | 3-3 | | | 3.4 | Assessment of questionnaire information | 3-3 | | | 3.5 | Special study—soot from residential wood burning | 0-0 | | | | stoves | 3-6 | | 4. | Phase II Sam | ppling and Analysis Program | 4-1 | | | 4.1 | General test program description | 4-1 | | | 4.2 | Recycled waste oil facilities | 4-4 | | | 4.3 | Drum reconditioning facilities | 4-27 | | | 4.4 | Wire reclamation facility | 4-50 | | 5. | | of Results | - -50 | | | 5.1 | Waste oil users | 5-1 | | | 5.2 | Drum reconditioners | 5-3 | | | 5.3 | Comparison with other studies | 5-4 | | 6. | | rance Summary Report | 6-1 | | - | 6.1 | Preliminary review of field data | 6-1 | | | 6.2 | Review of dioxins and furans and polycyclic | 0.1 | | | 5. _ | hydrocarbon data | 6-2 | | | 6.3 | Review of metals analysis data | 6-6 | | | 6.4 | Review of the final draft report | 6-7 | | Appendices | | | | | 1, | | | | | Α. | Description of | of sampling and analysis methods | A-1 | | B. | Continuous e | emission monitoring data (uncorrected) | B-1 | | C. | Waste oil and | alvses provided by site facilities A and B | C-1 | iii ## **LIST OF FIGURES** | Numb | oer er e | Page | |------|--|------| | 4-1 | Site A process diagram | 4-5 | | 4-2 | Site B process diagram | 4-16 | | 4-3 | Site C: Drum reconditioner process diagram | 4-28 | | 4-4 | Site D: Drum reconditioner process diagram | 4-40 | | 4-5 | Site E: Wire reclamation process diagram | 4-52 | ## LIST OF TABLES | Num | ber | Page | |------|--|------| | 4-1 | Summary of sampling and analysis parameters and methods | 4-2 | | 4-2 | Site A - Process operating conditions | 4-6 | | 4-3 | Site A - Inlet and outlet summary data | 4-8 | | 4-4 | Site A - Dioxin/furan results for MM5-SV samples | 4-10 | | 4-5 | Site A - 2,3,7,8-Substituted dioxin/furan for MM5-SV samples | 4-11 | | 4-6 | Site A - 2,3,7,8-TCDD equivalents results | 4-12 | | 4-7 | Site A - PAHs emissions results for MM5-SV samples | 4-13 | | 4-8 | Site A - Analysis results for MM5-MM (metals) train | 4-14 | | 4-9 | Site A - Continuous emission measurements | 4-15 | | 4-10 | Site B - Process operating conditions | 4-18 | | 4-11 | Site B - Inlet and outlet summary data | 4-20 | | 4-12 | Site B - Dioxin/furan results for MM5-SV samples | 4-21 | | 4-13 | Site B - 2,3,7,8-Substituted dioxin/furan for MM5-SV samples | 4-22 | | 4-14 | Site B - 2,3,7,8-TCDD equivalents results | 4-23 | | 4-15 | Site B - PAHs emissions results for MM5-SV samples | 4-24 | | 4-16 | Site B - Analysis results for MM5-MM (metals) train | 4-25 | | 4-17 | Site B - Continuous emission measurements | 4-26 | | 4-18 | Site C - Process operating conditions | 4-29 | | 4-19 | Drums reconditioned during sampling - Site C | 4-31 | | 4-20 | Site C - Outlet summary data | 4-32 | | 4-21 | Site C - Dioxin/furan results for MM5-SV samples | 4-33 | | 4-22 | Site C - 2,3,7,8-Substituted dioxin/furan for MM5-SV samples | 4-34 | | 4-23 | Site C - 2,3,7,8-TCDD equivalents results | 4-35 | | 4-24 | Site C - PAHs emissions results for MM5-SV samples | 4-36 | | 4-25 | Site C - Analysis results for MM5-MM (metals) train | 4-37 | | 4-26 | Site C - Continuous emission measurement | 4-39 | | 4-27 | Site D - Process operating conditions | 4-41 | | 4-28 | Drums reconditioned during sampling - Site D | 4-43 | | 4-29 | Site D - Outlet summary data | 4-44 | | 4-30 | Site D - Dioxin/furan results for MM5-SV samples | 4-45 | | 4-31 | Site D - 2,3,7,8-Substituted dioxin/furan for MM5-SV samples | 4-46 | | 4-32 | Site D - 2,3,7,8-TCDD equivalents results | 4-47 | | 4-33 | Site D - PAHs emissions results for MM5-SV samples | 4-48 | | 4-34 | Site D - Analysis results for MM5-MM (metals) train | 4-49 | | 4-35 | Site D - Continuous emission measurements | 4-51 | | 5-1 | Comparison of dioxin and furan emissions | 5-5 | | 5-2 | Comparison of metals emissions data | 5-6 | MRI-M\R9420-01 ## **NOMENCLATURE** dscm Dry standard cubic meter at 20°C, 760 mm Hg (68°F, 29.92 in. Hg) °F Degrees, Fahrenheit PAH Polynuclear aromatic hydrocarbons PCDD Polychlorinated dibenzo-p-dioxins (tetra-octa) PCDF Polychlorinated dibenzofurans (tetra-octa) μ g Microgram (10⁻⁶ g) ng Nanogram (10⁻⁹ g) #### **SECTION 1** #### INTRODUCTION #### 1.1 PROJECT SCOPE The State of California, through its Air Resources Board (ARB) has the authority and responsibility for identifying airborne compounds and substances to be considered as toxic air contaminants (TACs) and for evaluating the need to develop regulations for the control of these contaminants. The ARB is now developing an assessment of those combustion sources that emit polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polycyclic aromatic hydrocarbons (PAHs), and other toxic substances. The impetus of this program arises from the classification of PCDD and PCDF as TACs by the ARB, pursuant to the provisions of AB 1807. The ARB has identified potential PCDD and PCDF source categories that currently exist in the State of California. One important part in the sequence of determining the impact of TACs on the Californian environment is to determine TAC emissions from the waste oil recycling, drum reconditioning, and wire reclamation industries. In order to access fully the impact of toxic air contaminants, it is necessary to quantify TACs from those selected emission sources. In addition, ARB is interested in expanding its knowledge of wood burning stoves and the presence of PAHs and PCDDs/PCDFs in the soot residue. MRI is under contract to ARB to complete the "Assessment of Combustion Sources That Emit PCDDs and PCDFs, PAHs, and Other Toxic Compounds." The project is divided in two phases with the following key elements, actions, and deliverables: # Phase I—Source Identification and Screening Criteria - Develop a methodology to identify and screen potential sources for emissions of PCDDs, PCDFs, and other toxic compounds. - Identify sampling and analytical methods. - Prepare an interim report. Modify the interim report to include additional guidance from ARB on priorities to be addressed in Phase II. ## Phase II—Source Selection and Testing - Test the selected sources to determine emissions. - Complete analysis of each sample for PCDDs/PCDFs and other TACs. - Identify conditions possibly affecting the formation of PCDDs/PCDFs and TACs. - Identify potential control measures and operational or combustion modifications necessary to reduce TACs. - Prepare a final report. #### 1.2 BACKGROUND DISCUSSION As early as the late 1970s, concerns were raised in Europe about the emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) from waste incineration processes. During the past 10 years, these concerns have generated a substantive amount of research throughout North America and Western Europe on the mechanisms of PCDD/PCDF formation in waste combustion processes and on procedures that can be used to control those emissions. Much of the research focused on PCDD/PCDF emissions from municipal waste combustors (MWCs). These research studies have covered theoretical evaluations of the kinetics and thermodynamics of combustion reactions, bench-scale research, and emission testing of full-scale MWC facilities.
In general, the research has demonstrated that PCDDs/PCDFs are emitted from MWCs and that they can be emitted at levels that are considered to have an adverse effect on public health. The research also has led to some understanding, or at least hypotheses, about PCDD/PCDF formation/destruction mechanisms in waste combustion systems. However, no general agreement has been reached on the relative contribution of these mechanisms to PCDD/PCDF emissions from full-scale systems. Over the past 10 years, a substantive amount of research has been conducted on the formation and destruction of PCDDs/PCDFs in waste combustion systems. As a result of this research, a wide variety of reaction mechanisms has been proposed to explain PCDD/PCDF emissions from waste combustion processes (primarily MWCs). Although the number of proposed mechanisms is quite large, they can be divided into three general groups based on the part of the process from which the PCDDs/PCDFs are postulated to be derived—the waste feed, the high temperature combustion zone, and cooler zones downstream from the combustor. One of the earliest theories of the source of PCDD/PCDF emissions in MWCs was that they were actually present in the waste feed and escaped destruction in the combustion process. PCDDs were observed in the MWC refuse samples with more PCDDs going into the incinerator than coming out of the stack, although the ash analysis was not performed. However, there is no information on whether the feed material of the wire reclamation, waste oil, or drum reconditioning industries in the present study contains PCDDs/PCDFs. The emphasis is, moreover, on the controlling of stack emissions. The second process component that has been proposed as a source of PCDDs/PCDFs is the combustion zone itself. Most of the research published to date has been directed toward proposing formation/destruction mechanisms which are not understood at this time. Hypotheses that postulate a variety of precursor compounds have been proposed. Proposed precursors include related chlorinated aromatic species, such as chlorobenzenes and chlorinated phenols, and nonchlorinated, structurally similar species, such as lignin, in combination with inorganic chlorine. Various reaction mechanisms also have been proposed. These mechanisms include both gas phase homogeneous reactions and surface reactions in the bed or on suspended particles. None of the specified hypotheses that have been postulated have been confirmed by the research conducted to date. Consequently, the discussion below presents key findings relevant to selection of process parameters to consider for these subject industries rather than a detailed summary of the various hypotheses. - 1. The theoretical work by Shaub and Tsang suggested that at temperatures greater than 920°C (1700°F) in the presence of oxygen, the destruction of PCDDs/PCDFs was much more likely than formation. This finding was confirmed in bench scale work by Miller et al., in temperature ranges of 600° to 1000°C (1100° to 1800°F) and residence times as low as 0.5 sec. Consequently, a relationship between secondary chamber temperature and residence time and PCDD/PCDF emissions is not expected. - 2. Reactions on surfaces, particularly in oxygen-starved, cool spots may be important. - 3. The formation of complex chlorinated organics in thermal systems can be achieved with almost any type of fuel when in the presence of chlorine. Pyrolysis of two chlorophenols at temperatures of about 400°C (750°F) yielded almost all 210 congeners of PCDDs and PCDFs, and complex aromatics can be formed from simple aliphatics.^{2,3} Consequently, the specific chemical makeup of the waste relative to precursors probably is of minimal importance, providing a source of chlorine is present. 4. One recent study suggested that the S/Cl ratio in the feed may be a key factor in PCDD/PCDF formation.⁴ By far the most research has been conducted over the past 4 years on PCDD/PCDF formation in low temperature zones downstream of the combustion zone. Much of the work that has led to an understanding of factors which promote this formation comes from laboratory scale experiments, but the formation has been demonstrated across boilers and high temperature ESPs. Although the specific mechanism of formation is not defined fully, research has defined some of the parameters which affect PCDD/PCDF formation as summarized below. - 1. Optimum temperature for fly ash catalyzed PCDD/PCDF formation is about 300°C (570°F). Little formation appears to occur below 250°C (480°F), and above 350°C (660°F) destruction processes dominate. 1,5,6,9 - 2. Oxygen is a key parameter to PCDD/PCDF formation. When fly ash is exposed to an O₂-free carrier gas, no formation is found. In the presence of oxygen, PCDD/PCDF concentrations on the fly ash may increase 10 to 20 times.^{6,7} - 3. At temperatures of 300°C (570°F), the time required in laboratory experiments to approach equilibrium (steady-state) conditions is about 6 to 8 hr. Consequently, the time over which fly ash is exposed to 250° to 350°C (450° to 700°F) temperatures is likely to be important. - 4. Copper appears to be an important catalyst in the formation of PCDDs/PCDFs, and the quantity of carbon in the ash also may be important.^{8,9} - 5. Recent experiments found formation to be related to gas moisture content, although a review of MSW data shows that flue gas moisture levels after combustion is complete are not related to PCDDs/PCDFs concentration. #### 1.3 REFERENCES FOR SECTION 1 - 1. Shaub, W. M., and M. Tsang, "Dioxin Formation in Incinerators," *Environmental Science and Technology*, 17, 721-730 (1983). - 2. Miller, H., S. Marklund, I. Bjerle, and C. Lappe, "Correlation of Incineration Parameters for the Destruction of Polychlorinated Dibenzo-*p*-dioxins," *Chemosphere*, 18, 1485-1494 (1989). - 3. Ballschmitter, K., W. Zoller, and P. Kirschmer, "Experiments in High Temperature Chemistry of Organohalogens," *Chemosphere*, 15, 1369-1872 (1986). - 4. Griffin, R. D., "A New Theory of Dioxin Formation in Municipal Solid Waste Combustion," *Chemosphere*, 15, 1987-1990 (1986). - 5. Vogg, H., and L. Steiglitz, "Thermal Behavior of PCDD/PCDF in Fly Ash from Municipal Incinerators," *Chemosphere*, 15, 1373-1378 (1986). - 6. Steiglitz, L., and H. Vogg, "On Formation Conditions of PCDD/PCDF in Fly Ash from Municipal Waste Incinerators," *Chemosphere*, 16, 1917-1922 (1987). - 7. Hagenmaier, H., H. Brunner, A. Haoq, M. Kraft, and K. Lutzbe, "Problems Associated with the Measurement of PCDD and PCDF Emissions from Waste Incineration Plans." - 8. Steiglitz, L., and H. Vogg, "New Aspects of PCDD/PCDF Formation in Incineration Processes." - 9. Karasek, F. W., and L. C. Dickson, "Model Studies of Polychlorinated Dibenzo-p-dioxins Formation During Municipal Refuse Incineration." - 10. Visalli, J. R., "A Comparison of Dioxin, Furan, and Combustion Gas Data From Test Programs at Three MSW Incinerators," *JAPCA*, 37, 1451-1463 (1987). #### **SECTION 2** #### PROJECT SUMMARY The ARB is interested in determining the emission level from a series of facilities that may have the potential to produce by-product emissions of toxic air contaminants (TACs). These TACs include dioxins and furans, PAHs, and metals. The present study examined the waste oil users, drum reconditioners, and wire reclamation facilities as possible sources of these TACs. The waste oil users were manufacturing facilities that used the waste oil as fuel for heating their rotary kilns. Inlet and outlet sampling was conducted across the baghouse fabric filters at each site. In contrast, the drum reconditioner facilities were sampled to determine the emissions from a drum burning operation. There was no APCD, although that industry refers to the installed afterburner as such a device. Outlet sampling only was conducted at these two facilities. The wire reclamation facility removes coating from wire by means of burning and only samples of ash were collected. The results of the waste oil users indicate that there was a decrease in dioxin and furan emissions across the APCD. A similar trend was seen in the PAH emissions. The metals analysis indicated removal across the APCD for one facility, but the other exhibited no distinct trend. The drum reconditioners had dioxin and furan levels higher than the waste oil users. The wire reclamation ash was submitted to ARB for analysis. In order to place the TAC levels found in this study in some perspective, the data were compared to cement kiln data. The dioxin and furan data from the waste oil users were about two orders of magnitude lower than that from the cement kilns. The metals data showed no apparent difference between the two sources. The drum reconditioners have dioxin and furan and metals emissions that are comparable to the cement kiln data. #### **SECTION 3** ## SOURCE IDENTIFICATION AND SCREENING #### 3.1 IDENTIFICATION OF COMBUSTION SOURCES The ARB provided a list of potential test facilities for recycled oil users, drum reconditioners, and wire reclaimers. The list identified 8 to 24 facilities in each of the three categories with contact names, phone numbers, and addresses for most facilities. MRI explored the possibility of augmenting this list by using trade association membership lists as potential test facilities. The local air pollution control districts were contacted and asked to supply potential test sites. A primary goal of the Phase I study was to identify best candidate test sites among waste oil recycling, drum reconditioning, and wire reclamation facilities for the purpose of evaluating the potential for PCDD/PCDF emissions, as well as emissions of polynuclear aromatic hydrocarbons (PAHs) and metals from these three source categories. The two overriding concerns that formed the basis for identifying these sites were: (a) whether the facility had the potential to emit significant quantities of PCDDs/PCDFs (i.e., whether a facility
was likely to represent "worst case" PCDD/PCDF emissions for the particular industry category), and (b) whether the facility was equipped with "best" air pollution control systems for that industry category. Preliminary information collected from the local air pollution control districts was insufficient to evaluate the facilities with respect to these concerns. Consequently, a questionnaire was developed for collecting information directly from the facilities through a combined mail/telephone survey. The two major subsections below discuss the criteria used to formulate the questionnaire and describe the final questionnaire. ### 3.2 DEVELOPMENT OF QUESTIONNAIRE ## 3.2.1 Criteria Used for Questionnaire Development The questionnaire was designed to address the following three questions for each waste oil recycling, drum reconditioning, and wire reclamation facility: - 1. Does the facility have the potential for emitting relatively high concentrations of PCDDs/PCDFs (and possibly other trace organics) in comparison to other facilities in the same industry category? - 2. Is the air pollution control system likely to provide substantial reduction in PCDD/PCDF emissions relative to control systems at other facilities within the industry category? - 3. Is sampling of PCDD/PCDF emissions technically and logistically feasible at the facility? Because the theory of PCDD/PCDF formation and control is not fully understood and because information on these three industry categories is quite sparse, the questionnaire was not designed to provide quantitative answers to these three questions. Rather it was designed to collect as much information as possible that would allow relative comparisons of the facilities within each category. The three subsections below identify the key information that forms the basis for addressing each of the questions, along with a brief discussion of why the information is important. An initial phone survey of potential test facilities was conducted to obtain preliminary information that would assist in developing questions specific to the three industry sources. In addition, a brief literature search was conducted to add any other pertinent questions to the list being developed. From these discussions, a master questionnaire was developed for this study. The questionnaire was submitted to the ARB for comments. The ARB's comments were used to refine the questionnaire, and from this, individual questionnaires for each source category were developed. Once the questionnaires were completed, the ARB supplied MRI with a cover letter explaining to each facility the purpose for this information-gathering questionnaire. MRI then sent a questionnaire, MRI's letter, and the ARB's cover letter in a Federal Express packet to each facility. #### 3.2.2 Questionnaires Separate questionnaires were developed for each of the three industry categories—wire reclamation facilities, waste oil recyclers, and drum reconditioners. Each questionnaire requested general facility contact information, detailed information on the combustion system that can be used to evaluate the potential for PCDD/PCDF formation, summary information about the air pollution control system, and detailed information related to sampling access and stack gas characteristics that can be used to facilitate test planning. #### 3.3 COLLECTION OF SOURCE INFORMATION A preliminary phone screen was conducted by contacting each facility. The plant manager or environmental coordinator identified at each facility were questioned about this facility. Each facility was informed of the purpose of the phone call and the focus of the survey was explained. Each facility was asked a few questions that were central to the goal of the study. Specifically, each facility was asked if it had an air pollution control device (APCD), if it indeed did fit into the assigned category and if the contact person was willing to talk with MRI about the facility. Since one objective of the study is to evaluate APCDs, any facility that did not have at least one control device was automatically rejected. Once the status of the plant APCD was established, a packet containing the appropriate facility questionnaires, ARB letter of authorization, and MRI's letter of introduction were mailed to all facilities that had passed the initial screen and a few which had some interesting features that made them potential test sites. Each facility was subsequently called to ensure that the questionnaire had arrived, to answer any questions about the questionnaire, to set up a time for MRI to call back, and to set a deadline for replies. In an attempt to normalize questionnaire responses, MRI set up a system to complete each questionnaire over the phone. The facilities were asked to complete all applicable questions, and then during an interactive phone conversation, MRI would fill in our copy of the questionnaire. This system worked very well in two respects. First, MRI was able to ensure that the more important questions were answered in a consistent manner from facility to facility. Second, the MRI interviewers became more confident with the material, were able to draw out more complete information about the facilities, and were able to subjectively determine the level of facility cooperation. ## 3.4 ASSESSMENT OF QUESTIONNAIRE INFORMATION A total of 40 facilities were contacted in the initial phone screen, and 30 facilities were mailed a questionnaire. Seven wire reclamation, seven waste oil, and four drum facilities provided more or less complete information in response to the questionnaires. During the conduct of the phone survey, several interesting discussions occurred. Several contacts were either reluctant or unable to confirm the existence of an APCD. This was due as much to resistance to possible further regulation as to lack of knowledge of APCDs. One facility claimed to have a stack gas chiller. Upon further conversation, the chiller was discovered to be a crude scrubber. During the phone screen, some facilities were judged to no longer fit into the original category due to a change of fuel or a change in business. Several facilities had changed from recycled oil as a fuel to diesel or natural gas. The most common concern was over environmental regulations governing recycled oil. Some facilities were discovered to use waste oil only as a makeup fuel, and one facility was not a stationary source at all, but a locomotive. A few facility contacts were openly hostile. One individual refused to speak with any representative of the State government unless forced to by a court order. Several contacts asked the contact name and phone number of the ARB Work Assignment Manager, and some requested documentation of the validity of MRI's request. Most contacts were helpful or at least resigned to cooperating with the survey. The descriptions noted in the following sections were compiled from an assessment made of the information obtained from the questionnaire. ## 3.4.1 Recycled Waste Oil Facilities ## 3.4.1.1 Operating Facilities Seven facilities that burn recycled waste oil were surveyed for this study. The majority of the facilities burn 100% waste oil, while two facilities burn a mixture of waste oil and virgin fuel. Combustion zone temperatures vary over a range from 325° to in excess of 1500°F. Due to the likely presence of chlorine-containing corrosion inhibitors in the waste motor oil, a potential exists for dioxin and furan formation reactions. Particulate matter control is necessary, and air emissions are controlled by several types of devices. These air pollution control devices are cyclones, scrubbers, fabric filters, and afterburners. ## 3.4.1.2 Sampling Characteristics and Test Feasibility The waste oil facilities offer a variety of air pollution control devices. Two facilities have fabric filters while the remaining facilities have scrubber control and one is equipped with an afterburner. Combustion zone temperatures range above 1600°F for three of the companies, but one facility has a combustion zone temperature of only 325°F. #### 3.4.2 Drum Reconditioners ## 3.4.2.1 Operating Characteristics The drum reconditioning facilities recondition drums that contain residues ranging from food grade products, such as soda, juice, and fruit, to chemicals, such as adhesives, paints, concrete curing agents, lubricants, and greases. The facilities are fueled by natural gas and operate at temperatures ranging from 1100° to 1700°F. Each facility is equipped with an afterburner which is fueled by natural gas. Two of the facilities have waste heat recovery systems, and another facility had plans to install a similar system in the near future. Again, these facilities are small and have limited staffing. Information about the operating and design specifications for each facility was difficult to obtain. ## 3.4.2.2 Sampling Characteristics and Test Feasibility Fortunately, the drum reconditioning facilities lend themselves as acceptable test sites. Combustion zone temperatures are higher than those found in the wire reclamation facilities, and the combustion air is generally forced air. Each of the four facilities has an afterburner. One facility operates its afterburner at 1700°F and would be able to store enough feed for 6 hr of testing for 3 days. Another facility did not have sampling ports but would be able to have sufficient drums for 3 days of testing. #### 3.4.3 Wire Reclamation Facilities ## 3.4.3.1 Operating Characteristics The wire reclamation facilities are generally small facilities which operate on a demand basis only. The facilities recover wire from electric motor stators and lead-covered power cable and are fueled with natural gas. Due to the small loads at these facilities, they are not equipped with waste heat recovery systems. Air emissions are controlled by afterburners which are fueled by natural gas and operate between 1500° and 2000°F. Due to the small size of these
facilities and their sporadic operating schedules, they are not usually staffed with knowledgeable technical personnel. # 3.4.3.2 Sampling Characteristics and Test Feasibility The short and intermittent nature of the firing schedule at wire reclamation facilities does not lend itself to 6 hr of testing for 3 days. None of the facilities has sampling ports, scaffolding, and safety equipment, and electricians are not available. It is important to note that these facilities are potential sources of dioxins and furans, since the combustion zone temperatures are well below the temperatures required for destruction of dioxin and furan compounds. Also, with the exception of one facility, the afterburners at each facility operate at less than 1600°F. Temperatures greater than 1600°F are required to minimize dioxin and furan formation reactions. No information was obtained concerning the amount of air supplied to the combustion zone and the afterburner. ## 3.5 SPECIAL STUDY—SOOT FROM RESIDENTIAL WOOD BURNING STOVES Polycyclic aromatic hydrocarbons (PAHs) are emitted from combustion sources which include residential wood burning fire stoves. The ARB had recently commissioned a study (Atkinson, 1988) of PAHs in the ambient air around known industrial sources including an area impacted by residential wood smoke. Ambient air samples were collected during the high wood usage months of February and March in Mammoth Lakes, California. One important goal of that ambient air measurement study was to identify and quantify the volatile PAH and PAH derivatives, as well as the particle-associated species. The study found that of the PAHs determined, only retene (1-methyl-7-isopropylphenanthrene) was a useful marker compound for coniferous wood burning. The purpose of the present study is to determine the extent of PAHs in the soot of the wood-burning stoves. Possible correlations may exist between the PAH concentration in the soot and the ambient air as measured in the Atkinson study. A simplified approach was developed to identify homes with wood burning stoves and to collect a sample of the soot. It was assumed that the stoves and chimneys have to be cleaned periodically because of the buildup of soot from the burning of coniferous wood. A list of possible chimney sweeps in the Lake Tahoe and Sacramento areas was obtained from the *Yellow Pages*. A local chimney sweep was identified from several provided and contact was made. In the Tahoe area, the season for chimney cleanout is late July to early August which is just prior to the start of the heating season at that elevation. Generally, about four to six full cords of coniferous wood are burned by each house during the heating season which means that a sufficient amount of soot could be obtained from the chimney during cleanout. In contrast, the Sacramento area has both hard and coniferous wood burning stoves and fireplaces. Preliminary discussions were held with local chimney cleaning companies for MRI to collect about 200 g of soot during the cleanout of the stoves. The soot samples were to be collected from the chimney flues during the mechanical cleanout with wire brushes. Data collection included the sampling date, descriptive manufacturer's information on the stove, wood burned, and burning regime. In the Sacramento area, the wood burned was predominantly hardwood, i.e., oak (50%-90%), and softwood, i.e., fir and cedar (10%-50%). In the Tahoe area, all wood burned was softwood, i.e., pine and fir (100%). The wood ash samples were submitted to the ARB for analysis. #### **SECTION 4** ## PHASE II SAMPLING AND ANALYSIS PROGRAM At the Phase I review meeting, detailed discussions of the findings were held. In light of the current needs of ARB, it was determined that information and data needed to be obtained from all three types of facilities. The scope of the information requested was also expanded to include inlet sampling to assess removal efficiencies. However, budget constraints focused the work on conducting inlet and outlet sampling on two waste oil user facilities, outlet sampling on two drum reconditioner facilities, and collecting samples of ash from a wire reclamation facility. Following completion of the site selection process in Phase I, site visits were conducted at the facilities represented by the three categories. ## 4.1 GENERAL TEST PROGRAM DESCRIPTION A series of three test burns was to be conducted at each of the waste oil users and drum reconditioning facilities. Specifically, the tests were to determine: - PCDD/PCDF concentrations and emissions prior to and after any air pollution control device, if appropriate. - PAH concentrations and emissions prior to and after any APCD. - Metals concentrations and emissions (Ag, As, Ba, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se, Zn) prior to and after any APCD. - Continuous emissions for CO, SO₂, NO_x, O₂, and CO₂. The test protocol for sample collection and analysis is summarized in Table 4-1. Appendix A contains the details about the sampling and analysis methods used, including any modifications to the methods. The stack emissions were measured using appropriate ARB methods supplemented by EPA methods as appropriate, e.g., Method 1-4 and CEM methods. Table 4-1. SUMMARY OF SAMPLING AND ANALYSIS PARAMETERS AND METHODS | Analytical method | GC/MS
ARB Methods 428 and 429 | ICP (SW 846-6010) ^d ;
GFAA (SW 846-7000 series)
and CVAA (SW 846-7470-
7471) as needed | NDIR | NDIR | NDIR | Chemiluminescent | Ultraviolet | |---------------------------------------|---|--|---------------|-----------------|---------------|------------------|-----------------| | Preparation method | Solvent extraction | Acid digestion | NA . | NA | NA | NA | NA | | Analytical
parameters | PCDDs, PCDFs,
and PAHs | Metals | 00 | co ₂ | 02 | ,
V
V | so ₂ | | Sample size ^a | ≥ 1 dscm | V 1 dscm | NA | NA | NA | NA | NA | | Sampling method | ARB Methods ^b
428 and 429 | ARB Method 436 ^c | EPA Method 10 | EPA Method 3E | EPA Method 3E | EPA Method 7E | EPA Method 6C | | Sampling
frequency
for each run | 180 min | 180 min | Continuous | Continuous | Continuous | Continuous | Continuous | | Sample
location | Stack | | | | | | | | Sample | Stack gas | | | | | | | Exact volume on gas sampled was dependent on isokinetic sampling rate. PCDDs, PCDFs, and PAHs: according to California Air Resources Board (ARB) Methods 428 and 429, as modified (Appendix A). Total Ag, As, Ba, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se, and Zn: according to proposed California ARB Method 436, as modified (Appendix A). SW 846: U.S. EPA Manual, Test Methods for Evaluating Solid Waste, Third Edition. Sampling Train Summary. Each run included sampling of inlet and outlet emissions with two different sampling trains, i.e., a combined train for semivolatiles (SV) (i.e., PCDDs/PCDFs and PAHs) and a multiple metals (MM) train. The SV train that included an XAD-2 resin trap per ARB Methods 428 and 429 was used to determine emissions of PCDDs/PCDFs and PAHs. The second train (MM) that included two nitric acid/hydrogen peroxide and two acidified potassium-permanganate impingers and the ARB Method 436 were used to determine metals emissions. Data on inlet and outlet measurements of moisture content, duct/stack temperature, and velocity were obtained. The average flow rate, measured by the trains, for each location identified by run number was obtained and was used to calculate emissions of PCDDs and PCDFs, PAHs, and metals. Dioxin and Furan Emissions. The SV train samples were analyzed using ARB Method 428 for PCDDs/PCDFs and the 2,3,7,8-substituted TCDDs/TCDFs on all samples collected from both the inlet and outlet locations. In conjunction with the gas sample volumes, the concentrations and emission rates of dioxins and furans in the stack gas were calculated. Using ARB's 2,3,7,8-TCDD/TCDF toxic equivalency factors, each 2,3,7,8-substituted TCDD/TCDF congener was converted to its 2,3,7,8-TCDD/TCDF equivalent, and the total 2,3,7,8-TCDD/TCDF equivalent concentration and emission rate were determined. Polycyclic Aromatic Hydrocarbon Emissions. The SV train samples were also analyzed using ARB Method 429 for PAHs on all samples collected at both inlet and outlet locations. The concentrations were determined for 17 PAHs, and the emission rates were calculated. Metals Emissions. Three portions of the multiple metals train that were analyzed included (a) filter, probe rinse residue, HNO₃; (b) condensate and nitric acid/peroxide impingers; and (c) potassium permanganate/sulfuric acid impingers (Hg only). Continuous Emission Measurements. During the semivolatile and metals emission sampling, continuous measurements were made at the inlet and outlet locations for CO, SO₂, NO_x, O₂, and CO₂. Summary data are provided for those measurements that include the average emissions during the sampling run. Computer-generated graphs of the real-time measurements are included. #### 4.2 RECYCLED WASTE OIL FACILITIES #### 4.2.1 Site A #### 4.2.1.1 Process Description Site A produces high purity filtration materials from diatomaceous earth. A surface mine located on property adjacent to the plant supplies raw material for the process. The facility uses diesel fuel to fire its dryers and kiln. The use of recycled waste oil as a fuel had been discontinued just prior to conducting sampling for this test program. However, the facility graciously offered to use recycled waste oil as a fuel during the test program. This facility operates on a schedule of 10 days of operation followed by 4 days of maintenance. The facility operates three 8-hr shifts per day during manufacturing periods and one shift during maintenance periods. This schedule is kept throughout the year. Wet diatomaceous earth is introduced to an oil-fired dryer which heats the diatomaceous earth
to remove all moisture. The dried earth is air-separated, and material of designated mesh size for the specific product line is directed to the waste oil-fired rotary kiln. Processed materials from the kiln are air-separated by size and weight, and then are directed to the shipping department where they are packaged in 50-lb bags. Outsized materials are directed to the combustion gas baghouse. A schematic of Site A is included as Figure 4-1. Combustion gases from the rotary kiln and particulate separation of the dried diatomaceous earth are directed to an eight cell fabric filter baghouse. The exhaust was sampled from an 8-ft high, 17-in x 24.5-in rectangular vertical stack located on top of the baghouse with the top of the stack 36 ft from the ground. Gases entering the baghouse are at approximately +200°F, and never greater than 250°F. Materials captured in the baghouse are recycled back through the process. #### 4.2.1.2 Sampling Test program samples were collected before the entrance to the baghouse and from one of the exit stacks of the eight-cell baghouse. Operating conditions for Site A are presented in Table 4-2. Inlet samples were collected between the induced draft (i.d.) fan and the baghouse. The inlet sample location was in a curved duct section directly above and after the fan. This location was not consistent with sampling procedures specified by ARB Method 1, but there was no alternative location. The exit stack of Baghouse Cell No. 1 was the outlet sample location. This site was an acceptable sampling location based on ARB Method 1. Site A Process Diagram Figure 4-1 TABLE 4-2. SITE A - PROCESS OPERATING CONDITIONS | Parameter | Units | Run 1 | Run 2 | Run 3 | |--------------------------------|----------------------|-------|-------|-------| | Waste oil feed rate to kiln | gal/min | 2.5 | 2.4 | 2.5 | | Waste oil feed rate to furnace | gal/min | 1.5 | 1.8 | 1.9 | | Kiln temperature | °F | 1,581 | 1,492 | 1,625 | | Combustion air flowrate | ft ³ /min | 5,100 | 4,900 | 5,300 | | Process feed rate | tons/hr | 7.25 | 7.00 | 6.75 | | Baghouse temperature | °F | 207 | 220 | 224 | | Baghouse pressure drop | inWC | 3.1 | 3.4 | 3.8 | Sampling at Site A was conducted at the beginning of a 10-day operation schedule. During Run 1 and part of Run 2, the facility was having minor start-up problems. The main problem was the temperature of the rotary kiln. The kiln temperature fluctuated enough that product from the kiln was of a size less uniform than usual. This caused some clogging of the air separation systems. When clogging occurred, an access door to the product exit tubes was opened and excess material was removed. This was an infrequent occurrence, and only once was the upset enough to case a disruption in sampling. All other problems were considered minor enough that sampling was continued on the premise that these were normal occurrences which produced normal emissions. Sampling at the inlet to and outlet from the baghouse was performed by a combination of ARB Methods 428 and 429. This combination of methods was approved by CARB before this test program began. Basically, the difference is in the recovery of the sample from the trains and how the sample was split for analysis. Analytical deviations are presented in Appendix A. Sampling Methods 428 and 429 were combined into one train. The trains were washed using acetone, then methylene chloride, and then toluene to recover samples. This was the only sample recovery method deviation. Metal samples were collected using ARB Method 436. The inlet sampling train experienced a severe sample loading problem on the filter which resulted in a sampling method deviation. Particulate matter loading in the gas stream to the baghouse was so concentrated that the particulate filter became clogged to the point that an excessive vacuum built up in the sampling system. The vacuum was so great that isokinetic sampling could not be maintained, and sampling was halted. All three tests conducted at Site A experienced this problem. Sample times ranged from 36 to 60 min for the three tests. Samples that were collected are representative of conditions in the duct for those time periods. The volume of material collected was so great that no analytical minimum volume limit was exceeded. This problem is typical of inlet sampling, i.e., prior to air pollution control devices. No other sampling deviations occurred. ## 4.2.1.3 Analysis Results—Site A Data on inlet and outlet measurements of moisture content, duct/stack temperature, and velocity are provided in Table 4-3. The average flow rates, measured by the trains, identified by run number and location are also given. These rates were used to calculate PCDDs and PCDFs, PAHs, and metals emissions. It should be emphasized that the stack sampled was the No. 1 cell of an eight-cell baghouse. TABLE 4-3. SITE A - INLET AND OUTLET SUMMARY DATA | | Sampling
time
(min) | Gas
volume
sampled
(dscm) | Moisture
content
(% vol) | Average
stack
temp
(C) | Stack
velocity
(m/sec) | Stack flow rate (dscm/min) | |--------------|---------------------------|------------------------------------|--------------------------------|----------------------------------|---------------------------------------|----------------------------| | <u>Run 1</u> | | | | | · · · · · · · · · · · · · · · · · · · | | | MM-Inlet | 60 | 1.118 | 11.8 | 97 | 25.2 | 1,268 | | SV-Inlet | 42 | 0.656 | 17.5 | 100 | 24.4 | 1,138 | | MM-Outlet | 180 | 2.705 | 13.3 | 89 | 19.0 | 200 | | SV-Outlet | 180 | 3.623 | 13.7 | 89 | 17.9 | . 188 | | Run 2 | | | | | | | | MM-Inlet | 36 | 0.649 | 15.0 | 105 | 26.1 | 1,230 | | SV-Inlet | 36 | 0.609 | 17.9 | 105 | 26.3 | 1,197 | | MM-Outlet | 180 | 2.444 | 16.5 | 91 | 17.8 | 178 | | SV-Outlet | 180 | 4.169 | 11.1 | 91 | 18.8 | 201 | | Run 3 | | | | | | | | MM-Inlet | 36 | 0.649 | 15.2 | 104 | 25.8 | 1,223 | | SV-Inlet | 36 | 0.599 | 15.9 | 104 | 26.1 | 1,223 | | MM-Outlet | 180 | 2.421 | 13.9 | 94 | 18.8 | 193 | | SV-Outlet | 180 | 3.763 | 13.7 | 94 | 16.2 | 167 | MM = Multiple metals sampling train, ie. method 436 train. Note: Outlet samples were collected from the stack of number 1 cell of an 8-cell baghouse. The emissions calculated are only from this one stack. SV = Semivolatile sampling train, ie. combined method 428 and 429 train. Dioxin and Furan Emissions. Table 4-4 presents the dioxin and furan results by homologs, while Table 4-5 presents the 2,3,7,8-substituted data. In conjunction with the gas sample volumes, the concentrations and emission rates of dioxins and furans in the stack gas were calculated and are provided in these tables. In Table 4-6, using ARB's 2,3,7,8-TCDD/TCDF toxic equivalency factors, each 2,3,7,8-substituted TCDD/TCDF congener was converted to its 2,3,7,8-TCDD/TCDF equivalent, and the total 2,3,7,8-TCDD/TCDF equivalent concentration and emission rate were determined. Polycyclic Aromatic Hydrocarbon Emissions. Table 4-7 presents the concentrations found for 17 PAHs and their calculated emission rates. Metals Emissions. Table 4-8 presents the concentrations and emission rates for the 12 metals of interest. Continuous Emission Measurements. During the semivolatile and metals emission sampling, continuous measurements were conducted at the inlet and outlet locations for CO, SO_2 , NO_x , O_2 , and CO_2 . Summary data for those measurements are presented in Table 4-9. Computer-generated graphs of the real-time measurements are included in Appendix B. Additional Information. Although it was not a requirement of the survey, analysis results of the waste oil were obtained from the facility in order to provide some perspective on the waste fuel composition. Analysis summary is provided in Appendix C. #### 4.2.2 Site B ## 4.2.2.1 Process Description Site B produces magnesium oxide which is used in the manufacturing of refractory firebrick and related materials. Ore is excavated from nearby mines and processed in high-temperature reducing kilns to form magnesium oxide. Recycled waste oil is used to fire the rotary kilns. Raw magnesium ore is combined with water and mixed in a pug mill prior to introduction to the oil-fired kiln. The material is in a wet paste form when it enters the kiln. Processed material falls out the exit end of the kiln into cooling trays and then onto a belt which conveys it to a storage bin. A schematic of Site B is included as Figure 4-2. TABLE 4-4. SITE A - DIOXIN/FURAN RESULTS FOR MM5-SV SAMPLES | | Blank | Blank | Rur | | Rur | 2 | Ru | n 3 | |---------------------------|-------------------|-------------------|------------|----------|----------|------------------|------------------|------------------| | Analyte | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | | Sample volume (dscm) | | | 0.656 | 3.623 | 0.609 | 4.169 | 0.599 | 3.763 | | Stack flow rate (dscm/m) | | | 1,138 | 188 | 1,197 | 201 | 1,223 | 167 | | Concentration CO2 (%) | | | 1.8 | 2.2 | 3.2 | 2.3 | 3.4 | 2.3 | | Dioxins (pg) | | | | | | | | | | TCDD | | 564 | 302 | 409 | 320 | 355 | 354 | 283 | | PeCDD | | 270 | 241 | 330 | 243 | 103 | 194 | 54.1 | | HxCDD | | 281 | 338 | 769 | 312 | 271 | 336 | 116 | | HpCDD | | 181 | 249 | 495 | 272 | 235 | 181 | 135 | | OCDD | | 715 | 324 | 483 | 391 | 283 | 295 | 238 | | Total (pg) | | 2,011 | 1,454 | 2,486 | 1,538 | 1,247 | 1,360 | 826 | | Total (ng/dscm) | 3.24b | 0.522b | 2.22 | 0.686 | 2.53 | 0.299 | 2.27 | 0.220 | | Total (ng/dscm @ 12% CO2) | 13.9 | 2.76 | 14.8 | 3.74 | 9.47 | 1.56 | 8.01 | 1.15 | | Total (lb/hr) | 5.08E-07 | 1.28E-08 | 3.34E-07 | 1.71E-08 | 4.00E-07 | 7.95E-09 | 3.67E-07 | 4.85E-09 | | Furans (pg) | | | | | | | | | | TCDF | | 2,110 | 6,540 | 3,460 | 3,900 | 1,560 | 1,880 | 1,260 | | PeCDF | | 1,800 | 559 | 1,040 | 888 | 653 | 492 | | | HxCDF | | 431 | 411 | 966 | 314 | 335 | 144 | 421
187 | | HpCDF | | 69.8 | 192 | 612 | 204 | 184 | 127 | | | OCDF | | 58.4 | 61.1 | 130 | 50.3 | 2.93 a | 2.9 a | 95.4 | |
Total (pg) | | 4,469 | 7,763 | 6,208 | 5,356 | 2,735 | 2.9 a
2,646 | | | Total (ng/dscm) | 7.19 ^b | 1.16 ^b | 11.8 | 1.71 | 8.80 | 0.656 | 4.42 | 2,001 | | Total (ng/dscm @ 12% CO2) | 30.8 | 6.14 | 78.9 | 9.35 | 33.0 | 3.42 | | 0.532 | | Total (lb/hr) | 1.13E-06 | 2.84E-08 | 1.78E-06 | 4.26E-08 | 1.39E-06 | 1.74E-08 | 15.6
7.15E-07 | 2.77
1.17E-08 | | Total Dioxins and Furans | | | | | | | | | | Conc. (ng/dscm @ 12% CO2) | 44.7 | 8.91 | 93.7 | 13.1 | 42.5 | 4.00 | 00.0 | | | Emission rate (lb/hr) | 1.64E-06 | 4.12E-08 | 2.12E-06 | 5.97E-08 | 1.79E-06 | 4.98
2.54E-08 | 23.6
1.08E-06 | 3.92
1.66E-08 | | Surrogate recovery (%) | | | | | | | | | | 13C-2,3,7,8-TCDF | | 106 | 97 | 404 | 404 | | | | | 13C-2,3,7,8-TCDD | | 103 | 97
97 | 101 | 121 | 100 | 109 | 125 | | 13C-1,2,3,7,8-PeCDF | | 100 | | 96 | 111 | 97 | 92 | 124 | | 13C-1,2,3,7,8-PeCDD | | 97 | 113
102 | 110 | 117 | 94 | 93 | 124 | | 13C-1,2,3,4,7,8-HxCDF | | 128 | | 100 | 119 | 95 | 97 | 129 | | 13C-1,2,3,6,7,8-HxCDD | | 114 | 139
105 | 149 | 142 | 120 | 129 | 152 | | 13C-1,2,3,4,6,7,8-HpCDF | | 114 | | 98 | 114 | 108 | 101 | 127 | | 13C-1,2,3,4,6,7,8-HpCDD | | | 141 | 128 | 145 | 124 | 122 | 152 | | 13C-12-OCDD | | 98 | 118 | 125 | 120 | 121 | 127 | 162 | | 37CI-2,3,7,8- TCDD° | | 98
95 | 101 | 117 | 118 | 111 | 118 | 144 | | 13C-2,3,4,7,8- PeCDF° | | | 94 | 98 | 94 | 93 | 94 | 92 | | 13C-1,2,3,6,7,8- HxCDF° | | 94
77 | 90 | 93 | 95 | 95 | 97 | 99 | | 13C-1,2,3,4,7,8- HxCDD° | | 77 | 71 | 71 | 75 | 81 | 72 | 75 | | 13C-1,2,3,4,7,8,9- HpCDF° | | 93
95 | 91 | 108 | 101 | 96 | 103 | 101 | | | · | 85 | 94 | 93 | 86 | 88 | 91 | 99 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. Note: Outlet samples were collected from the stack of number 1 cell of an 8-cell baghouse. The emissions calculated are only from this one stack. b. Blank train "emissions" calculated using average flow rates from each location. c. Field surrogates spiked into XAD prior to sample collection. TABLE 4-5. SITE A - 2,3,7,8-SUBSTITUTED DIOXIN/FURAN FOR MM5-SV SAMPLES | Analyte Inlet Jscm/m) 22 (%) 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 33.4 a 36.6 21 a 26.8 18.5 99.1 715 923 0.239 b | 0.656
1,138
1,138
1.8
26.6
26.2 a
26.2 a
28.6 a
34.6 | 3.623
188
2.2
34.2
51.6 a | 0.609
1,197 | Outlet
4.169 | Inlet
0.599 | Outlet
3.763 | |--|---|--|--|----------------|-----------------|----------------|-----------------| | e (dscm) (dscm/m) CO2 (%) DD CDD CDD CDD CDD -OCDD | + 0 - 0 10 - 10 | 0.656
1,138
1.8
1.8
26.6
26.2 a
26.2 a
28.6 a
34.0 a | 3.623
188
2.2
2.2
34.2
51.6 a | 0.609 | 4.169 | 0.599 | 3.763 | | o (dscm/m) CO2 (%) DD COD COD COD COD COD COD COD COD COD | # <i>(</i>) = <i>(</i>) = <i>(</i>) | 1,138
1.8
26.6
26.2 a
28.6 a
34.6
34.0 a | 188
2.2
34.2
51.6 a
53 | 1,197 | | | | | CO2 (%) DD CDD CDD CDD CDD CDD CDD CDD CDD | T (0 - 0 10 - 10 | 1.8
26.6 a
26.2 a
34.6 a
34.0 a | 2.2
34.2
51.6 a | | 201 | 1,223 | 167 | | DD
CDD
CDD
CDD
CDD
CDD | T 0 - 0 10 - 10 | 26.6
26.2 a
28.6 a
34.6 a | 34.2
51.6 a
53 | 3.2 | 2.3 | 3.4 | 2.3 | | рр
ССВР
ССВР
ССВР
ЧРСВР
4РСВР | T 0 - 0 10 - 10 | 26.6
26.2 a
28.6 a
34.6 a | 34.2
51.6 a
53 | | | | | | 0
0
0
0
00
00
CDD | (A - A 10 - 10 | 26.2 a 34.6 a 34.0 a 3.00 | 51.6 a
53 | 21.5 | 27.0 a | 9.2 a | 10.9 a | | | | 28.6
34.6
a
34.0 | 53 | 22.4 a | 12.3 a | 13.9 | 8.45 a | | | 26.8
18.5
99.1
715
923
0.239 b | 34.6
34.0 a | | 29.6 a | 24.0 a | 20.4 | 10.8 a | | | 18.5
99.1
715
923
0.239 b | 34.0 a | 99 | 31 a | 32.5 | 12.8 a | 15 | | • | 99.1
715
923
0.239 b | 101 | 77 | 43.0 a | 28.0 a | 12.0 a | 10.7 a | | | 715
923
0.239 b | /2 | 257 | 143 | 103 | 98.8 | 71.9 | | | 923
0.239 b
1.27 | 324 | 483 | 391 | 283 | 295 | 238 | | | 0.239 b
1.27 | 222 | 966 | 618 | 464 | 462 | 366 | | 1.49 | 1.27 | 0.849 | 0.275 | 1.01 | 0.111 | 0.771 | 0.0973 | | scm @ 12% CO2) 6.37 | 00 L | 5.66 | 1.50 | 3.81 | 0.581 | 2.72 | 0.507 | | Total (lb/hr) 2.33E-07 5.86E-09 | 2).00E−03 | 1.28E-07 | 6.84E-09 | 1.61E-07 | 2.96E-09 | 1.25E-07 | 2.15E-09 | | Furans (pg) | | | | | | | | | 2,3,7,8-TCDF | 339 | 171 | 552 | 187 | 216 | 151 | 129 | | | 165 | 81.8 | 197 | 85.9 | 100 a | 29 | 46.2 | | | 110 | 65.8 | 213 | 77 | 79.1 | 52.2 | 43.1 | | | 11 | 122 | 332 | 108 | 108 | 69.1 | 55.9 | | | 58.4 | 59.1 | 146 a | 51.7 | 56.3 | 16.5 a | 25.4 | | | 24.2 | 9.9 | 115 | 37.8 a | 42.2 | 11.2 a | 20.7 | | | 3.42 a | 5.39 | 31.4 | 2.34 a | 5.02 a | 1.52 a | 1.63 a | | | 68.1 | 131 | 339 | 139 | 125 | 95.6 | 69.1 | | | 7.44 a | 17.2 | 51.8 | 15.2 | 18.9 a | 13.1 | 5.70 a | | 9-OCDF | 58.4 | 61.1 | 130 a | 50.3 | 65.4 a | 15.9 a | 37.2 | | | 940 | 721 | 2,029 | 734 | 721 | 482 | 434 | | 1.51 | 0.243 | 1.10 | 0.560 | 1.21 | 0.173 | 0.805 | 0.115 | | cm @ 12% CO2) 6.48 | 1.29 | 7.33 | 3.06 | 4.52 | 0.903 | 2.840 | 0.602 | | Total (lb/hr) 2.37E-07 5.96E- | 5.96E-09 | 1.65E-07 | 1.39E-08 | 1.91E-07 | 4.60E-09 | 1.30E-07 | 2.55E-09 | | | 9 | C
C | 7 | ć | • | 1 | ; | | 6.20 (200 | 7.0 | 13.0 | 4.00 | 0.03 | 1.48 | 5.56 | 1.1 | | Emission rate (lb/hr) 4.70E-07 1.18E- | 1.18E-08 | 2.93E-07 | 2.08E-08 | 3.52E-07 | 7.56E-09 | 2.55E-07 | 4.70E-09 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit.b. Blank train "emissions" calculated using average flow rates from each location. Note: Outlet samples were collected from the stack of number 1 cell of an 8-cell baghouse. The emissions calculated are only from this one stack. TABLE 4-6. SITE A - 2,3.7,8-TCDD EQUIVALENTS RESULTS | | • | | | - | | - | - | | | | | | | | | | | | | |---------------------------|---------|--------------------------|------------|-----------|----------------------|--------------------------|-----------|-------------------------|--------------------|-----------|--------------------------|------------|-----------|--------------------------|--------------------------|-----------|--------------------------|-------------------------------------|----------| | | | | Inlot | | | Outlet | | | Inlet | | | Outlat | | | เทเรเ | | | ñ | | | | | Sample volume (decm) | e (decm) = | 0.656 | Sample volume (dscm) | me (dscm) = | 3.623 | Sample volun | le volume (dscm) = | 0.609 | Sample volume (dscm) = | e (dscm) ≈ | 4.169 | Sample volume (decm) | ണ െ (decm) ജ | 0.586 | Semplo votume (deam) a | в _∷:sp) ஓ: | 3.76 | | | 9 | Stack flow rate (dscm/m) | 9 (dscm/m) | 1,138 | Stack flow r | Stack flow rate (dscm/m) | | Stack flow rat | flow rate (dscm/m) | 1,197 | Stack flow rate (dscm/m) | (dscm/m) | 201 | Stack flow rate (dscm/m) | Stack flow rate (dscm/m) | 1,223 | Steck flow rate (dscm/m) | o (dscm/m)
(CO2 (%) _ജ | 1,6 | | • | P . | Concentration COZ (%) = | # (%) ZOO | 9, | Concentration | Concentration COZ (%) = | 2.2 | Concentration COZ (%) = | 1 002 (%) = | Souit. | Total | 200 (vg) = | Coming T | Total | 100 100 100 | Fourie | Total | 100000 | Fourie | | te f | equiv. | (bd) | (mg/dscm) | (ng/dscm) | (bd) | (ug/dscm) | (ng/dscm) | (pg) | (uosp/gu) | (ng/dscm) | | (mg/dscm) | (ng/dscm) | (bd) | (mg/dscm) | (mg/dscm) | (bd) | (uosp/bu) | nosb/gn) | c. | - | 28.6 | 0.0405 | 0.0405 | 34.2 | 0.0094 | 0.0094 | 21.5 | 0.0353 | 0.0353 | 27.0 * | 0.0065 | 0.0065 | 9.5 | 0.0154 | 0.0154 | 10.8 | 0.0028 | 0.002 | | ago | - | 26.2 • | 0.0389 | 0.0399 | 51.6 | • | | 22.4 8 | | 0.0368 | 12.3 | 0.0030 | 0.0030 | 13.9 | 0.0232 | 0.0232 | 8.45 | 0.0022 | 0.002 | | (xCDD | 0.03 | 28.6 | 0.0436 | 0.0013 | ß | | | 29.6 | | 0.0015 | 24.0 | 0.0058 | 0.0002 | 20.4 | 0.0341 | 0.0010 | 10.8 | 0.0029 | 0.000 | | xcop | 0.03 | 34.6 | 0.0527 | 0.0016 | 8 | 0.0182 | 0.0005 | 31.8 | 0.0509 | 0.0015 | 32.5 | 0.0078 | 0.0002 | 12.8 | 0.0214 | 90000 | ₹.
2 | 0.0040 | 0.000 | | (xCDD | 0.03 | 34.0 | 0.0518 | 0,0016 | 77 | 0.0213 | | 43.0 | 0.0708 | 0.0021 | 28.0 % | 0.0067 | 0.0002 | 12.0 | 0.0200 | 0.0006 | 10.7 | 0.0028 | 0.000 | | HPCDD | 0.03 | 127 | 0.1936 | 0.0058 | 257 | 0.0709 | | 143 | 0.2348 | 0.0070 | 103 | 0.0247 | 0.0007 | 8.88 | 0,1649 | 0.0049 | 71.9 | 0.0191 | 0.000 | | | 0.03 | 324 | 0.4939 | 0.0148 | 483 | 0.1333 | 0.0040 | 391 | 0.6420 | 0.0193 | 283 | 0.0679 | 0.0020 | 582 | 0.4925 | 0.0148 | 238 | 0.0632 | 0.001 | | . , | | . ! | | | ļ | | | ; | į | į | ; | | | į | | Č | ç | | 0.00 | | t <u>ı</u> | - | 171 | 0.2607 | 0.2807 | 225 | 0.1524 | | 187 | 0.3071 | 0.3071 | 216 | 0.0518 | 8160.0 | 151 | 1.252.U | 0.2521 | 671 | 0.00 | | | ΡÜ | - | 81.8 | 0.1247 | 0.1247 | 187 | 0.0544 | 0.0544 | 82.8 | 0.1411 | 0.1411 | 100 | 0.0240 | 0.0240 | 28 | 0.0985 | 0.0985 | 46.2 | 0.0123 | 0.012 | | JOF. | - | 65.8 | 0.1003 | 0.1003 | 213 | 0.0588 | 0.0588 | 11 | 0.1264 | 0.1264 | 79.1 | 0.0190 | 0.0190 | 52.2 | 0.0871 | 0.0871 | 43.1 | 0.0115 | 0.011 | | XCDF | 0.03 | 122 | 0.1880 | 0.0056 | 332 | 0.0916 | 0.0027 | 108 | 0.1773 | 0.0053 | 108 | 0.0259 | 0.0008 | 69.1 | 0.1154 | 0.0035 | 55.8 | 0.0149 | 0000 | | XCDF | 0.03 | 59.1 | 0.0901 | 0.0027 | 146 | 0.0403 | 0.0012 | 51.7 | 0.0849 | 0.0025 | 56.3 | 0.0135 | 0.0004 | 33.0 | 0.0551 | 0.0017 | 25.4 | 0.0057 | | | *CDF | 0.03 | 6.8 | 0.0101 | 0.0003 | 115 | 0.0317 | 0.0010 | 37.8 | 0.0621 | 0.0019 | 42.2 | 0.0101 | 0.0003 | 22.4 | 0.0374 | 0.0011 | 20.7 | 0.0055 | | | *CDF | 0.03 | 6.39 | 0.0082 | 0.0002 | 31.4 | 0.0087 | 0.0003 | 2.34 | 0.0038 | 0.0001 | 5.02 | 0.0012 | 0.00004 | 1.62 | 0.0025 | 0.0001 | 1.63 | 0.0004 | • | | HDCDF | 0,03 | 131 | 0.1997 | 0.0060 | 399 | 0.1101 |
0.0033 | 139 | 0.2282 | 0.0088 | 125 | 0.0300 | 0.000 | 92.8 | 0.1548 | 0.0046 | 69.1 | 0.0184 | | | HPCDF | 0.03 | 17.2 | 0.0262 | 0.0008 | 51.8 | 0.0143 | | 15.2 | 0.0250 | 0.0008 | 18.9 | 0.0045 | 0.0001 | 13.1 | 0.0219 | 0.0007 | 5.70 | 0.0015 | 0 | | | 0.03 | 61.1 | 0.0931 | 0.0028 | 130 | 0.0359 | 0.0011 | 50.3 | 0.0826 | 0.0025 | 65.4 | 0.0157 | 0.0006 | 15.9 | 0.0266 | 0.0008 | 37.2 | 0.0080 | 0.00° | | 7,8-TCDD | | | | | | | | * | | | | | | | | | | | | | concentration (ng/decm) = | ybu) uc | tecm) = | | 0.5883 | | | 0.2985 | | | 0.6760 | | | 0.0933 | | | 0.5093 | | | 0.067 | | 7,8-TCDD equivalent | uivalen |)(
(decm) = 1 | | 80.0 | | | - | | | 2 | | | 0 487 | | | 1.80 | | | 0.35 | | lb(hr) = | | - (max) | | 8.86E-08 | | | 7.42E-09 | | | 1.07E-07 | | | 2.48E-09 | | | 8.24E-08 | | | 1.50E-(| the detection limit value. "Totals" calculated using half the detection limit. TABLE 4-7. SITE A - PAHS EMISSIONS RESULTS FOR MM5-SV SAMPLES | _ | R | un 1 | 1 | | Run | 2 | F | Run 3 | Blank | Blank | | |---------------------------|------------|------|------------|---|------------|------------|--------|---------|--------------|------------|---| | | Inlet | | Outlet | | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | | | Sample volume (dscm) | 0.656 | | 3.623 | | 0.609 | 4.169 | 0.599 | 3.763 | | | | | Stack flow rate (dscm/m) | 1138 | | 188 | | 1197 | 201 | 1223 | | | | | | Concentration CO2 (%) | 1.8 | | 2.2 | | 3.2 | 2.3 | 3.4 | | | | | | PAHs (ug) | | | | | | | 0 | 2.0 | | | | | Naphthalene | 173 | | 457 | | 149 | 446 | 241 | 555 | | 20.5 | | | Acenaphthylene | 14.3 | | 61 | | 18.9 | 53.5 | 15.7 | | | 0.1 | 2 | | Acenaphthene | 5.61 | | 28.9 | | 8.62 | 27.9 | 9.03 | | | 0.102 | а | | Fluorene | 17.5 | | 66.1 | | 22.4 | 62.3 | 23.5 | | | 0.102 | | | Phenanthrene | 22.2 | | 59.7 | | 27.7 | 50.4 | 31.2 | — | | 0.276 | | | Anthracene | 25.6 | | 70.9 | | 2.03 | 4.16 | 4.38 | 7.94 | | 0.342 | | | Fluoranthene | 3.49 | | 3.65 | | 4.48 | 2.65 | 7.05 | 7.52 | | 0.361 | | | Pyrene | 3.49 | | 2.97 | | 4.11 | 2.53 | 6.32 | | | 0.173 | | | Retene | 0.1 | а | 0.389 | | 0.538 | 0.272 | 0.664 | 0.63 | | 0.179 | _ | | Benz(a)anthracene | 1.7 | | 0.218 | | 1.96 | 0.216 | 2.74 | 0.03 | | 0.175 | a | | Chrysene | 1.65 | | 0.306 | | 1.89 | 0.268 | 2.69 | 0.161 | | 0.173 | | | Benzo(b)fluoranthene | 0.352 | | 0.164 | | 0.544 | 0.1 a | | 0.101 | _ | | | | Benzo(k)fluoranthene | 0.352 | | 0.164 | | 0.508 | 0.1 a | | 0.1 | | 0.1
0.1 | | | Benzo(a)pyrene | 0.45 | | 0.381 | | 0.497 | 0.245 | 0.769 | 0.256 | a | 0.1 | а | | Indeno(1,2,3-cd)pyrene | 0.1 | а | 0.1 | а | 0.187 | 0.1 a | | | а | | _ | | Dibenz(a,h)anthracene | 0.1 | | 0.1 | | 0.1 a | 0.1 a | | | a
a | 0.1 | | | Benzo(ghi)perylene | 0.473 | | 0.1 | | 1.18 | 0.1 a | | 0.1 | | 0.1 | | | Totai PAHs (ug) | 270 | | 752 | _ | 245 | 651 | 348 | 829 | | 0.1 | а | | Total PAHs (ug/dscm) | 412 | | 208 | | 402 | 156 | 581 | 220 | 23.2
37.4 | 23.2 | | | Total PAHs (ug/dscm @ 12% | 2,749 | | 1,132 | | 1,506 | 815 | 2,050 | 1,149 | 160 | 6.03 | | | Total PAHs (lb/hr) | 0.0621 | | 0.00516 | | 0.0636 | 0.00415 | 0.0940 | 0.00486 | | 31.9 | | | FIELD SURROGATES RECOVER | | | | | 0.0000 | 0.00413 | 0.0540 | 0.00400 | 0.00587 | 0.000148 | | | D10-1-Methylnapthalene | —
55% | | 70% | | 73% | 60% | 38% | 66% | | E00/ | | | D12-Perylene | 72% | | 80% | | 91% | 91% | 86% | | | 56% | | | LAB SURROGATES RECOVERY | | | 00 / 0 | • | 0170 | 3170 | 00% | 0 00% | | 96% | | | D8-Naphthalene | 34% | | 42% | | 51% | 27% | 8% | 070/ | | | | | D10-Acenaphthene | 69% | | 70% | | 77% | 27%
69% | | | | 29% | | | D10-Fluorene | 77% | | 75% | | 82% | 76% | 66% | | | 72% | | | D10-Phenanthrene | 84% | | 88% | | 89% | 76%
92% | 77% | | | 80% | | | D10-Anthracene | 79% | | 81% | | 83% | | 88% | | | 85% | | | D10-Fluoranthene | 87% | | 86% | | | 85% | 79% | | | 83% | | | D10-Pyrene | 86% | | 92% | | 88%
87% | 94% | 86% | | | 86% | | | D12-Benz(a)anthracene | 72% | | 92%
91% | | | 93% | 85% | | | 89% | | | D12-Chrysene | 76% | | 91% | | 90% | 97% | 88% | | | 90% | | | D12-Benzo(a)pyrene | 76%
69% | | | | 90% | 98% | 90% | | | 92% | | | | 0370 | | 88% | | 94% | 96% | 88% | 96% | | 98% | | Note: Outlet samples were collected from the stack of number 1-cell of an 8-cell baghouse. The emissions calculated are only from this one stack. ⁽a): Values shown are the detection limits which were calculated as 2.5 times the baseline noise level. | υZ | | 33.1 | ¥ Z | 1,688 | 1,510 | 0.253 | , | <6.29 | 41.8 | AN | <48.1 | <17.8 | < 0.000471 | | 900 | 1000 | 0.04 | , cc. | 0.00 | 2,0/0 | 0.434 | <62.9 | 11 | N
A | <174 | <71.2 | <0.00168 | | | 2788 | 10.1 | Ą | 2,799 | 4,312 | 0.698 | 9 | 67.05 | 24.1 | Y S | <30.4 | <12.6 | <0.000322 | | < 6.29 | 11.0 | <17.3 | |----|---|---------------------------|---------------------|-----------|------------------------|------------------|-----------------------------|------------------------|---------------------------|---------------------|-----------|------------------------|------------------|-------|-----------------------|---------------------------|---------------------|------------|------------------------|------------------|-----------|-----------------------|---------------------------|----------|--------|------------------------|------------------|-------|--------|-----------------------|---------------------------|---------------------|-----------|------------------------|----------------------------|-----------------------|---------------------------|---|----------|-------------------|-----------------------|------------------|-------------|-----------------------|-------------------|-----------| | Se | 795 | 3.00 | AN A | 798 | 714 | 0.120 | ! | 65.1 | 27.1 | A
V | 92.2 | 34.1 | 0.000902 | | 0 | 620 | 47:7\
NA | 2 0 | 1 273 | 2/2'- | 0.20 | 55.3 | 5.94 | Y. | 61.2 | 25.1 | 0.000590 | | | 814 | < 2.24 | Ϋ́ | 814 | 1,255 | 0.203 | 7 117 | † • | 20.1 | ď ; | 111 | 45.6 | 0.00117 | | 21.6 | < 2.24 | <23.8 | | £ | 1.349 | 6.12 | AN. | 1,355 | 1,212 | 0.203 | 1 | 29.2 | 9.69 | ĄZ | 66.2 | 24.5 | 0.000647 | | - | 678 | 7.2 | 1 226 | 950.6 | 2,00g | 0.333 | 42.3 | 15.3 | AN. | 57.6 | 23.6 | 0.000555 | | | 1467 | 3.47 | AN
N | 1,470 | 2,265 | 0.366 | n
n | 7.00 | 7.17 | 2 6 | 6.9/ | 31.8 | 0.000811 | | 55.0 | 2.14 | 57.1 | | Z | 94.7 | 4.48 | ¥ Z | 99.1 | 88.7 | 0.0149 | , | 95.0 | 5.24 | ¥ | 100.2 | 37.0 | 0.000980 | | 197 | 284 | NA AM | Ç Ş | 81.0 | 2 2 2 | 0.038 | 58.1 | 11.7 | AN
AN | 69.8 | 28.5 | 0.000672 | | | 138 | 7.25 | ď | 145 | 224 | 0.0363 | 7 | 1.00 | 4.0 | ¥ 6 | 25. C | 39.5 | 0.00100 | | 86.3 | < 0.542 | 86.3 | | Mn | 246 | 24.9 | AN. | 271 | 242 | 0.0406 | • | 16.0 | 12488 | ۷
۷ | 12,504 | 4,622 | 0.122 | | 757 | 25.5 | AN AN | 283 | 436 | 00100 | 60.00 | 13.1 | 316 | Ϋ́ | 329 | 135 | 0.00317 | | | 265 | 13.8 | Y
Y | 279 | 429 | 0.0694 | A SE | 2000 | 55550 | 2 0 | 53,33/ | 22,031 | 0.562 | | 0.842 | 12.1 | 12.9 | | Hg | <1.29 | <1.08 | 2.38 | <4.75 | <4.25 | < 0.000713 | | 0.120 | <1.21 | 1.71 | ×3.04 | <1.12 | <0.0000297 | | 7 | 20 918 | <0.612 | < 2 74 | 2.5 | 7900000 | 70.0000.0 | 0.168 | <1.53 | 0.531 | < 2.23 | <0.912 | < 0.0000215 | | | 2.91 | <0.966 | <0.482 | < 4.36 | <6.71 | <0.00109 | 0.0862 | 1000 | 86.7 | 20.202 | \$2.28 | < U.941 | < 0.0000240 | | 0.0838 | <0.259 | <0.343 | | Cu | <38.2 | <1.54 | NA | <39.7 | <35.5 | < 0.00596 | į | 15.1 | <1.54 | ¥2 | 15.1 | 5.59 | 0.000148 | | 24.3 | 305 | A Z | <37.2 | <57.4 | 10000 | 2000 | 32.6 | 6.31 | Ϋ́ | 38.9 | 15.9 | 0.000375 | | | < 33.1 | <1.54 | Y
Y | < 34.6 | <53.3 | <0.00862 | 9 13 | 7.50 | † * * * * * * * * * * * * * * * * * * * | 2 7 | V 10.7 | 24.42 | <0.000113 | | 1.96 | <1.54 | <3.50 | | ບັ | 554 | 12.1 | NA
A | 999 | 203 | 0.0850 | , | 16.7 | 29.6 | ¥
V | 46.3 | 17.1 | 0.000000 | | F27 | 3.76 | AN | 531 | 818 | 0 133 | 3 | <1.32 | 3.22 | A
A | <4.54 | <1.86 | < 0.0000437 | | | 563 | 2.70 | Ą
, | 299 | 871 | 0.141 | <1.33 | 21.0 | 2. 4 | ¥ 5 | 0.5 | 6.83 | 0.000/48 | | <1.32 | 1.02 | <2.34 | | 3 | <15.7 | 1.48 | Ϋ́ | <17.2 | <15.4 | <0.00258 | e
u | 6.70 | 4.60 | ₹
Z | 67.5 | 21.3 | 0.000562 | | 21.6 | 6.98 | ¥. | 28.5 | 44.0 | 0.00716 | | 43.5 | 3.68 | A
V | 47.20 | 19.31 | 0.000455 | | | 29.0 | 1.18 | ¥
X | 30.5 | 46.5 | 0.00752 | 12.5 | 289 | 60.5
VIA | 7 4 | 7 0 | - 2 | 0.000173 | | 7.43 | 0.332 | 7.76 | | Ba | 1153 | 3.94 | ¥
V | 1,157 | 1,035 | 0.174 | Cuc | 2.50 | 2.14 | ¥
X | 4.64 | 1.72 | 0.0000454 | | 1151 | 2.16 | AN | 1.153 | 1.776 | 0.289 | | 2.04 | 1.50 | Y
V | 3.54 | 1.45 | 0.0000341 | | : | 1162 | 1.05 | ¥
Z | 1,163 | 1,793 | 0.290 | 2.68 | 1.83 | Q N | 4 51 | - 4 | 200000 | 0.0000475 | | 1.29 | 0.371 | 1.66 | | As | <181 | <8.29 | ¥2 | <189 | <169 | <0.0284 | 9.76 | 0.70 | <8.29 | Y
Y | 37.8 | 14.0 | 0.000370 | | <163 | <8.29 | ¥Z | <171 | < 263 | <0.0429 | | 92.6 | < 8.29 | ΨN | 92.6 | 39.1 | 0.000921 | | ! | <157 | <8.29 | ¥ ; | <165 | <254 | < 0.0411 | 33.3 | <8.29 | 0 T | 418 |) + 1.0 | 3:71 | < 0.000438 | | 29.0 | <8.29 | <37.3 | | Ag | 243 | <1.63 | A
A | 243 | 217 | 0.0365 | 7. 2. | *7:1 \ | ; | ¥ Y | 0 | 0 | 0 | | 122 | <1.63 | ¥. | 122 | 188 | 0.0308 | | 33.3 | <1.63 | NA | 33.3 | 13.6 | 0.000321 | | | 145 | <1.63 | Y Y | 145 | 224 | 0.0362 | <1.23 | 2.49 | N | 62.62 | 7.07 | 10:00 | × 0.0000392 | | <1.24 | <1.63 | <2.87 | | | Run 1
Inlet
Rinses and filter, ug | Nitric acid impingers, ug | KMnO4 impingers, ug | Total, ug | Concentration, ug/dscm | Emissions, lb/hr | Dutlet Rivers and filter in | Mississ and intell, up | Nitric acid impingers, ug | KMnO4 impingers, ug | Total, ug | Concentration, ug/dscm | Emissions, Ib/hr | Run 2 | Rinses and fifter, up | Nitric acid Impingers, ug | KMnO4 impingers, ug | Total, ud | Concentration, ug/dscm | Emissions, Ib/hr | Outlet | Rinses and filter, ug | Nitric acid impingers, ug | _ | | Concentration, ug/decm
| Emissions, lb/hr | Run 3 | illiet | Rinses and filter, ug | Nitric acid impingers, ug | KMnO4 impingers, ug | Total, ug | Concentration, ug/dscm | Emissions, ID/nr
Outlet | Rinses and fifter, up | Nitric acid impingers, ug | KMnO4 impingere un | Total 10 | Conception mitted | Concentration, agreem | Emissions, 10/nr | Blank train | Rinses and filter, ug | Impingers 1-6, ug | Total, ug | NA = Not applicable. Note: The outlet samples were collected from the stack of cell-1 of an 8-cell baghouse. The emissions calculated are only from this one stack. TABLE 4-9. SITE A -- CONTINUOUS EMISSION MEASUREMENTS | | | | | | | | | | 12% CO ₂ | | |-------|--------|----------|----------------|-----------------|-------|-----------------|-----------------|--------|---------------------|-----------------| | Run 1 | Inlet | | O ₂ | CO ₂ | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | | Avg | 19.0 | 1.8 | 196.1 | 3.3 | 30.5 | 1421.6 | 21.3 | 197.4 | | | | Max | 20.4 | 2.6 | 216.7 | 3.9 | 35.0 | 2798.6 | 29.1 | 271.5 | | | | Min | .0 | .8 | 169.0 | 2.7 | 27.0 | 956.4 | 17.0 | 147.6 | | | | | | | | | | | | | | | Outlet | | | | | | | | | | | | | Avg | 17.9 | 2.2 | 173.9 | 32.1 | 19.3 | 959.1 | 171.0 | 106.2 | | | | Max | 19.6 | 2.8 | 200.5 | 136.8 | 22.0 | 1244.1 | 608.0 | 119.4 | | | | Min | 16.3 | 1.7 | 150.1 | 14.8 | 15.6 | 724.7 | 87.5 | 75.6 | | | | | | | | | | | | | | Run 2 | Inlet | | O ₂ | CO ₂ | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | | Avg | 17.3 | 3.2 | 247.3 | 5.1 | 27.0 | 947.1 | 20.1 | 103.2 | | | | Max | 18.2 | 3.8 | 282.0 | 9.4 | 32.0 | 1656.3 | 59.0 | 169.5 | | | | Min | 16.5 | 1.8 | 216.7 | .4 | 24.0 | 724.4 | 1.4 | 83.9 | | | | | | | | | | | | | | | Outlet | | | | | | | | | | | | | Avg | 20.8 | 2.3 | 198.2 | 62.3 | 21.1 | 1025.8 | 311.8 | 109.3 | | | | Max | 21.4 | 3.0 | 234.4 | 166.5 | 25.3 | 1256.5 | 688.2 | 130.9 | | | | Min | 19.5 | 1.9 | 167.5 | 21.2 | 19.1 | 788.2 | 120.0 | 88.4 | | | | <u> </u> | | | | | | | | | | Run 3 | Inlet | | O ₂ | CO ₂ | со | SO ₂ | NO _x | СО | SO ₂ | NO _x | | | | Avg | 17.1 | 3.4 | 269.0 | 9.1 | 25.0 | 965.5 | 32.7 | 90.0 | | | | Max | 17.6 | 4.5 | 332.4 | 22.9 | 27.0 | 1590.1 | 78.0 | 113.2 | | | | Min | 16.0 | 2.1 | 223.6 | 3.8 | 11.0 | 728.9 | 11.9 | 57.8 | | | | | | | * | | | | | | | | Outlet | | | | | | | | | | | | | Avg | 20.1 | 2.3 | 226.7 | 55.7 | 22.0 | 1185.6 | 271.5 | 115.3 | | | | Max | 22.6 | 3.1 | 279.9 | 252.7 | 24.1 | 1503.2 | 981.4 | 132.4 | | | | Min | 17.4 | 1.9 | 184.1 | 20.4 | 15.3 | 851.8 | 118.8 | 76.5 | Site B Process Diagram Figure 4-2 91:35 SEV hosen flw 2 062091 Combustion air enters the lower end of the kiln where waste oil is fired. The gas passes countercurrent through the kiln heating the magnesium ore to approximately 2300°F in a reducing atmosphere. The combustion gas exits the high end of the kiln into an expanded vertical section of ductwork that was part of a previous air pollution control device (APCD). This section is insulated and equipped with sampling ports and was the inlet sampling location. The combustion gas is ducted to a countercurrent wet scrubber. Seawater is sprayed in to reduce the temperature. Fresh well water is piped into the scrubber to flow over multiple perforated plates to absorb acid gases. A demister pad after the scrubber removes excess water. The gas stream is directed up through an i.d. fan and into a combined 140-ft, 30-in diameter emission stack which serves all the kilns. The outlet sampling location from Kiln A was located prior to the junction with the combined stack. Site B operates on a continuous basis approximately 50 weeks/year. Three shifts per day operate several similar rotary kilns. Operating conditions for Site B are presented in Table 4-10. ## 4.2.2.2 Sampling The facility operated in a normal fashion during the test program except for the normal water spray on the exhaust i.d. fan. A fresh water spray is normally directed onto the fan to prevent carbonate build-up from the seawater. This spray was turned off to reduce entrained water in the emission gas. Run 6 exhibited some high carbon monoxide concentrations and lower combustion gas temperatures indicative of upset conditions. Sampling was suspended until conditions returned to normal. All other tests were conducted under stable operating conditions. Sampling was conducted in a manner identical to that at Site A for organics and metals. Runs 4 and 5 had curtailed inlet metal sampling times due to shattering of the quartz nozzles from thermal shock. The nozzles shattered when removed from the approximately 900°F stack. Since no other nozzles of exactly the same size were available to replace them as per ARB Method 5, sampling was suspended. Runs 4 and 5 were for one-half the prescribed 3-hr test period in ARB Method 436, i.e., one traverse of the stack. The quantity of material collected after one traverse was sufficient to meet analytical requirements. After Run 5, MRI had expended its supply of quartz nozzles for the water-cooled inlet probe so a stainless steel nozzle was used instead. During Run 5, moisture broke through the MRI gas conditioning system and entered the sulfur dioxide (SO_2) monitor for the inlet location. This prevented obtaining data from the inlet SO_2 Continuous Emission Monitor (CEM), and no SO_2 data are available for the first half of the test for the inlet location. At the half-way point of the test, when the stack sampling trains were switching ports, the monitor TABLE 4-10. SITE B - PROCESS OPERATING CONDITIONS | Parameter | Units | Run 4 | Run 5 | Run 6 | |----------------------------|--------|-------|-------|-------| | Waste oil feed rate | gal/hr | 254 | 262 | 524 | | Atomizer pressure #1 | psi | 330 | 340 | 333 | | Atomizer pressure #2 | psi | 330 | 340 | 333 | | Kiln temperature | °F | 3,381 | 3,384 | 3,370 | | Mg(OH) ₂ input | lb/hr | 15.0 | 15.0 | 15.0 | | MgO | ton/hr | 7.5 | 7.4 | 6.8 | | Venturi inlet temperature | °F | 930 | 935 | 944 | | Venturi outlet temperature | °F | 151 | 151 | 150 | | Venturi pressure drop | inWC | 28.3 | 30.0 | 30.0 | was not yet repaired. Rather than have no inlet data for the entire test, the SO_2 monitor for the outlet was switched over to analyze the inlet gas sample for the second half of the test period. No other sampling deviations occurred at Site B. #### 4.2.2.3 Analysis Results-Site B Data on inlet and outlet measurements of moisture content, duct/stack temperature, and velocity are provided in Table 4-11. The average flow rates, measured by the trains, identified by run number and location, are also given, and were used to calculate PCDDs and PCDFs, PAHs, and metals emissions. Dioxin and Furan Emissions. Table 4-12 presents the dioxin and furan results by homologs, while Table 4-13 presents the 2,3,7,8-substituted data. In conjunction with the gas sample volumes, the concentrations and emission rates of dioxins and furans in the stack gas were calculated and provided in these tables. In Table 4-14, using ARB's 2,3,7,8-TCDD/TCDF toxic equivalency factors, each 2,3,7,8-substituted TCDD/TCDF congener was converted to its 2,3,7,8-TCDD/TCDF equivalent, and the total 2,3,7,8-TCDD/TCDF equivalent concentration and emission rate were determined. Polycyclic Aromatic Hydrocarbon Emissions. Table 4-15 presents the concentrations found for 17 PAHs and their calculated emission rates. Metals Emissions. Table 4-16 presents the concentrations and emissions for the 12 metals of interest. Continuous Emission Measurements. During the semivolatile and metals emission sampling, continuous measurements were conducted at the inlet and outlet locations for CO, SO_2 , NO_x , O_2 , and CO_2 . Summary data for those measurements are presented in Table 4-17. Computer generated graphs of the real time measurements are included in Appendix B. Additional Information. Although it was not a requirement of the survey, analysis results of the waste oil were obtained from the facility in order to provide some perspective on the waste fuel composition. Analysis summary is provided in Appendix C. TABLE 4-11. SITE B - INLET AND OUTLET SUMMARY DATA | | Sampling
time
(min) | Gas
volume
sampled
(dscm) | Moisture
content
(% vol) | Average
stack
temp
(C) | Stack
velocity
(m/sec) | Stack flow
rate
(dscm/min) | |--------------|---------------------------|------------------------------------|--------------------------------|----------------------------------|------------------------------|----------------------------------| | <u>Run 4</u> | | | | | | - | | MM-Inlet | 96 | 0.933 | 34.1 | 480 | 19.8 | 342 | | SV-Inlet | 192 | 2.057 | 34.8 | 480 | 19.9 | 340 | | MM-Outlet | 192 | 3.830 | 9.2 | 46 | 19.4 | 446 | | SV-Outlet | 192 | 2.142 | 9.2 | 45 | 19.3 | 446 | | Run 5 | | | | | | • | | MM-Inlet | 93 | 2.221 | 32.0 | 501 | 20.2 | 352 | | SV-Inlet | 192 | 2.834 | 32.7 | 506 | 20.6 | 353 | | MM-Outlet | 192 | 3.961 | 8.7 | 45 | 20.0 | 466 | | SV-Outlet | 192 | 2.119 | 8.9 | 44 | 19.0 | 443 | | Run 6 | | | | | | | | MM-Inlet | 180 | 4.207 | 28.5 | 502 | 21.0 | 385 | | SV-Inlet | 192 | 2.903 | 32.8 | 510 | 20.6 | 351 | | MM-Outlet | 192 | 3.866 | 8.4 | 45 | 19.5 | 455 | | SV-Outlet | 192 | 2.153 | 8.7 | 44 | 19.3 | 450 | MM = Multiple metals sampling train, ie. method 436 train. SV = Semivolitle sampling train, ie. combined method 428 and 429 train. TABLE 4-12. SITE B - DIOXIN/FURAN RESULTS FOR MM5-SV SAMPLES | | Blank | Blank | Rui | 1 4 | Rui | n 5 | Ru | ın 6 | |-----------------------------------|--------------------|----------|----------|------------------|------------------|------------------|------------------|-------------------| | Analyte | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | | Sample volume (dscm) | | | 2.057 | 2.142 | 2.834 | 2.119 | 2.903 | 2.15 | | Stack flow rate (dscm/m) | | | 340 | 446 | 353 | 443 | 351 | 450 | | Concentration CO2 (%) | | | 12.4 | 10.4 | 5.6 | 10.4 | 7.8 | 10. | | Dioxins (pg) | | | | | | | | |
 TCDD | | 215 | 2,170 | 662 | 3,780 | 759 | 2,060 | 50 | | PeCDD | | 3.4 a | 2,540 | 336 | 6,800 | 328 | 2,790 | 597 | | HxCDD | | 122 | 5,790 | 296 | 18,100 | 449 | · · | 230 | | HpCDD | | 31.6 | 6,000 | 163 | 18,900 | 410 | 9,740 | 240 | | OCDD | | 162 | 5,730 | 288 | 12,200 | 1,070 | 10,600 | 108 | | Total (pg) | | 534 | 22,230 | 1,745 | 59,780 | | 6,360 | 311 | | Total (ng/dscm) | 0.206 ^b | | 10.8 | 0.815 | | 3,016 | 31,550 | 1,486 | | Total (ng/dscm @ 12% CO2) | 0.287 | 0.289 | 10.5 | 0.940 | 21.1
45.2 | 1.423 | 10.9 | 0.690 | | Total (lb/hr) | 9.46E-09 | | 4.86E-07 | 4.81E-08 | 45.2
9.85E-07 | 1.642
8.34E08 | 16.7
5.05E-07 | 0.804
4.11E-08 | | Furans (pg) | | | | | | | 0.002 07 | 4.116-00 | | TCDF | | 100 | 4= | | | | | | | PeCDF | | 128 | 15,800 | 2,620 | 50,600 | 3,060 | 18,500 | 1,510 | | HxCDF | | 127 | 9,640 | 915 | 43,900 | 1120 | 17,600 | 423 | | HpCDF | | 34.3 | 4,730 | 263 | 23,900 | 419 | 8,230 | 94.4 | | OCDF | | 27.2 | 3,270 | 124 | 16,500 | 64.3 | 9,810 | 57.5 | | Total (pg) | | 17.6 | 916 | 49.1 | 3,790 | 108 | 2,500 | 39.2 | | | h | 334 | 34,356 | 3,971 | 138,690 | 4,771 | 56,640 | 2,124 | | Total (ng/dscm) | 0.129 ^b | | 16.7 | 1.85 | 48.9 | 2.25 | 19.5 | 0.987 | | Total (ng/dscm @ 12% CO2) | 0.179 | 0.181 | 16.2 | 2.14 | 105 | 2.60 | 30.0 | 1.15 | | Total (lb/hr) | 5.92E09 | 9.22E-09 | 7.51E-07 | 1.09E-07 | 2.29E-06 | 1.32E-07 | 9.06E-07 | 5.87E-08 | | Total Dioxins and Furans | | | | | | | | | | Conc. (ng/dscm @ 12% CO2) | 0.466 | 0.470 | 26.6 | 3.08 | 150 | 4.04 | | | | Emission rate (lb/hr) | | 2.40E-08 | 1.24E-06 | 3.06
1.57E-07 | 150 | 4.24 | 46.7 | 1.95 | | • | | 2.402-00 | 1.242-00 | 1.5/6-0/ | 3.27E-06 | 2.15E-07 | 1.41E-06 | 9.98E-08 | | Surrogate recovery (%) | | | | | | | | | | 13C-2,3,7,8-TCDF | | 106 | 94 | 77 | 81 | 95 | 119 | 112 | | 13C-2,3,7,8-TCDD | | 97 | 89 | 72 | 98 | 87 | 99 | 98 | | 13C-1,2,3,7,8-PeCDF | | 96 | 86 | 71 | 92 | 87 | 105 | 100 | | I3C-1,2,3,7,8-PeCDD | | 99 | 86 | 65 | 106 | 82 | 101 | 93 | | 3C-1,2,3,4,7,8-HxCDF | | 122 | 109 | 83 | 113 | 113 | 130 | 122 | | 3C-1,2,3,6,7,8-HxCDD | | 103 | 89 | 64 | 97 | 93 | 101 | 102 | | 3C-1,2,3,4,6,7,8-HpCDF | | 105 | 108 | 92 | 97 | 93 | 108 | | | 3C-1,2,3,4,6,7,8-HpCDD | | 99 | 107 | 89 | 110 | 93
97 | 117 | 107 | | 3C-12-OCDD | | 94 | 100 | 78 | 107 | 80 | 98 | 117
92 | | 37CI-2,3,7,8-TCDD ^c | | 96 | 94 | 91 | 94 | 98 | | | | 3C-2,3,4,7,8-PeCDF ^c | | 95 | 96 | 90 | 103 | | 98 | 97 | | 3C-1,2,3,6,7,8-HxCDF ^c | | 78 | 79 | 73 | 76 | 94
76 | 98 | 98 | | 3C-1,2,3,4,7,8-HxCDD ° | | 96 | 106 | 100 | 107 | 75
00 | 73 | 79 | | 3C-1,2,3,4,7,8,9-HpCDF ° | | 85 | 97 | 93 | 98 | 99
96 | 108
97 | 104
96 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. Note: Outlet samples were collected from the stack of number 1 cell of an 8-cell baghouse. The emissions calculated are only from this one stack. b. Blank train "emissions" calculated using average flow rates from each location. c. Field surrogates spiked into XAD prior to sample collection. TABLE 4-13. SITE B - 2,3,7,8-SUBSTITUTED DIOXIN/FURAN FOR MM5-SV SAMPLES | Analyto | | | | | ? | > = = | | > | |--|----------|----------|----------|----------|----------|----------|----------|----------| | | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | Inlet | Outlet | | Sample volume (dscm) | | | 2.057 | 2.142 | 2.834 | 2.119 | 2.903 | 2.153 | | Stack flow rate (dscm/m) | | | 340 | 446 | 353 | 443 | 351 | 450 | | Concentration CO2 (%) | | | 12.4 | 10.4 | 5.6 | 10.4 | 7.8 | 10.3 | | Dioxins (pg) | | | | | | | | | | 2,3,7,8-TCDD | | 8.26 a | 81.6 a | 16.4 a | 139 | 26.4 a | 20 a | 21.4 a | | 1,2,3,7,8-PeCDD | | 3.92 a | 201 | 27.0 a | 491 | 25.4 a | 194 | 13.1 | | 1,2,3,4,7,8-HxCDD | | 17.2 a | 248 a | 27.0 a | 787 | 27.4 a | 327 | 17.3 a | | 1,2,3,6,7,8-HxCDD | | rv
a | 208 | 28.8 a | 1,940 | 39.1 | 1,050 | 20.3 | | 1,2,3,7,8,9-HxCDD | | 7.11 | 482 | 35.8 a | 1,860 | 37.9 | 875 | 16.6 | | 1,2,3,4,6,7,8-HpCDD | | 31.6 | 3,350 | 84.6 | 10,000 | 228 | 5,680 | 56.2 | | 1,2,3,4,6,7,8,9-OCDD | | 162 | 5,730 | 288 | 12,200 | 1070 | 6,360 | 311 | | Total (pg) | | 218 | 10,436 | 440 | 27,417 | 1415 | 14,496 | 437 | | Total (ng/dscm) | 0.0839 | 0.102 b | 5.07 | 0.205 | 9.67 | 0.668 | 4.993 | 0.203 | | Total (ng/dscm @ 12% CO2) | 0.117 | 0.118 | 4.91 | 0.237 | 20.73 | 0.771 | 7.68 | 0.236 | | Total (lb/hr) | 3.86E-09 | 6.02E-09 | 2.28E-07 | 1.21E-08 | 4.52E-07 | 3.91E-08 | 2.32E-07 | 1.21E-08 | | Furans (pg) | | | | | | | | | | 2,3,7,8-TCDF | | 37.4 | 2,980 | 501 | 6,740 | 519 | 4,080 | 277 | | 1,2,3,7,8-PeCDF | | 18.6 a | 699 | 84.4 | 2,170 | 86.6 | 929 | 35.6 a | | 2,3,4,7,8-PeCDF | | 10.8 | 886 | 83.9 | 4,070 | 9.96 | 1,900 | 40.6 | | 1,2,3,4,7,8-HxCDF | | 17.4 a | 1,290 | 78.5 | 6,830 | 118 | 2,970 a | 39.1 | | 1,2,3,6,7,8-HxCDF | | 7.92 | 504 | 41 | 2,360 | 49.1 | 350 | 18.5 | | 2,3,4,6,7,8-HxCDF | | 5.64 a | 614 | 25.8 | 3,260 | 45.4 | 1,750 | 13 a | | 1,2,3,7,8,9-HxCDF | | 4.56 a | 212 | 4.4 a | 2,780 a | 18.10 a | 822 | 6.2 a | | 1,2,3,4,6,7,8-HpCDF | | 20.9 | 2,000 | 86.5 | 18,140 a | 153.0 a | 5,100 | 46.2 | | 1,2,3,4,7,8,9-HpCDF | | 5.91 | 309 | 17.5 a | 4,240 a | 31.5 а | 1,450 | 10.4 | | 1,2,3,4,6,7,8,9-OCDF | | 17.6 | 916 | 49.1 | 3,790 | 108 | 2,500 | 39.2 | | Total (pg) | | 124 | 10,380 | 961 | 41,800 | 1,124 | 20,366 | 498 | | Total (ng/dscm) | 0.0476 | 0.058 | 5.05 | 0.449 | 14.7 | 0.530 | 7.02 | 0.231 | | Total (ng/dscm @ 12% CO2) | 0.066 | 0.067 | 4.88 | 0.518 | 31.6 | 0.612 | 10.8 | 0.270 | | Total (lb/hr) | 2.19E-09 | 3.41E-09 | 2.27E-07 | 2.65E-08 | 6.89E-07 | 3.11E-08 | 3.26E-07 | 1.38E-08 | | Total 2,3,7,8-substituted dloxin/furan | | | i | į | | | | 6 | | Conc. (ng/dscm @ 12% CO2) | | | 9.79 | 0.755 | 52.3 | 1.383 | 18.5 | 0.506 | | Emission rate (lb/hr) | | | 4.55E-07 | 3.86E-08 | 1.14E-06 | 7.02E-08 | 5.58E-07 | 2.59E-08 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. b. Blank train "emissions" calculated using average flow rates from each location. TABLE 4-14. SITE B - 2,3,7,8-TCDD EQUIVALENTS RESULTS | 100, 700 100 000 | Outlet | Sample volume (decm) = 2
Stack flow rate (decm/m) | Total | ug/decm) (n | |------------------|---------------|--|-----------|---------------------| | Run 6 | , | 2.603
351
7.8 | Foreign | (ng/dscm) | | | inlet | Sample volume (decm) = Stack flow rate (decm/m) Concentration CO2 (44) = | Total | (mosp/Bu) (bd) | | | | 2.119 443 | Equiv. | ٤ | | | Outlet | Sample volume (decm) = Stack flow rate (decm/m) Concentration CO2 (%) = | Total | (bd) (bd) | | 4 un p | | 2.834
353
5.6 | Equiv. | (mg/dscm) | | | Inlet | Sample volume (dscm) = Stack flow rate (dscm/m) Concentration CO2 (%) = | otal | (bd) (ug/dscm) | | | | 2.142 Samp
446 Stack
10.4 Conce | Equiv. To | (ug/decm) (p | | | Outlet | Sample volume (dscm) = Stack flow rate (dscm/m) Concentration CO2 (%) = | | ug/dscm) (i | | | ; | - 0 4
 | iv. Total | cm) (pg) | | | | , | Equiv. | (ug/decm) (ug/decm) | | | Semple volume | 8 % 8 | Total | u) (6d) | | | | ARB | equiv. | e factor | the detection limit value. "Totals" calculated using half the detection limit. TABLE 4-15. SITE B - PAHs EMISSIONS RESULTS FOR MM5-SV SAMPLES | Sample volume (dscm) Stack flow rate (dscm/m) Concentration CO2 (%) PAHs (ug) Naphthalene Acenaphthylene Acenaphthene | 2.057
340
12.4
199
8.26 | Outlet 2.142 446 10.4 | 2.834
353
5.6 | Outlet
2.11
44
10. | | 2.903
351 | Outlet
2.153 | Inlet | Outlet | |---|-------------------------------------|-----------------------|---------------------|------------------------------------|-----|--------------|-----------------|-------------|------------| | Stack flow rate (dscm/m) Concentration CO2 (%) PAHs (ug) Naphthalene Acenaphthylene | 340
12.4
199
8.26 | 446
10.4
168 | 353
5.6 | 44 | | | 2.153 | | | | Concentration CO2 (%) PAHs (ug) Naphthalene Acenaphthylene | 12.4
199
8.26 | 10.4 | 5.6 | | 3 | | | | | | PAHs (ug) Naphthalene Acenaphthylene | 199
8.26 | 168 | | 10. | | 351 | 450 | | | | Naphthalene
Acenaphthylene | 8.26 | | | | 4 | 7.8 | 10.3 | | | | Acenaphthylene | 8.26 | | | | | | | | | | • | | | 229 | 15 | 6 | 200 | 132 | | 13.4 | | Acenanhthene | • | 3.42 | 10.6 | 1.0 | 7 | 8.17 | 0.739 | | 0.404 | | 2 to on a printing rice | 0.1 | 0.648 | 0.632 | 0.56 | | 0.43 | 0.1 | а | 1.18 | | Fluorene | 2.76 | 1.66 | 3.76 | 1.3 | | 2.05 | 0.1 | | 2.55 | | Phenanthrene | 20.4 | 12 | 33 | 13. | | 22.6 | 8.24 | _ | 0.366 | | Anthracene | 1.68 | 0.405 | 2.02 | 0.2 | | 0.355 | 11.1 | | 0.251 | | Fluoranthene | 6.89 | 3.08 | 11.1 | 3.3 | | 7.64 | 1.89 | | 0.164 | | Pyrene | 2.95 | 1.1 | 4.05 | 1.2 | | 1.45 | 0.523 | | 0.104 | | Retene | 0.319 | 0.104 | 0.963 | 0.15 | | 0.713 | 0.132 | | 0.157 | | Benz(a)anthracene | 1.16 | 0.195 | 0.889 | 0.21 | | 0.252 | 0.182 | | 0.179 | | Chrysene | 1.01 | 0.295 | 1.84 | 0.33 | | 1.01 | 0.102 | | 0.179 | | Benzo(b)fluoranthene | 0.305 | 0.0725 | 0.642 | 0.00 | _ | 0.468 | 0.231 | • | 0.107 | | Benzo(k)fluoranthene | 0.305 | 0.0725 | 0.642 | | 1 a | 0.468 | 0.1 | | 0.1 | | Benzo(a)pyrene | 0.23 | 0.252 | 0.295 | 0.2 | | 0.242 | 0.216 | a | 0.248 | | Indeno(1,2,3-cd)pyrene | 0.1 | | | | 1 a | 0.242 | 0.210 | • | 0.246 | | Dibenz(a,h)anthracene | 0.1 | | | a 0. | | 0.1 | 0.1 | a | 0.1 | | Benzo(ghi)perylene | 0.1 | | a 0.1 | | 1 a | 0.1 | 0.1 | | 0.1 | | Total PAHs (ug) | 246 | 192 | 300 | u 0. | | 246 | 156 | a
19.7 | 19.7 | | Total PAHs (ug/dscm) | 119 | 89 | 106 | 8- | | 85 | 72 | 7.59 | 9.22 | | Total PAHs (ug/dscm @ 12% CO | 116 | 103 | 227 | 9: | • | 130 | 84.4 | 10.6 | 10.7 | | Total PAHs (lb/hr) | 0.00537 | 0.00528 | 0.00494 | 0.0049 | | 0.00394 | 0.00431 |
0.000349 | 0.000544 | | FIELD SURROGATE RECOVERY | | ********** | 0.00.0 | 0.0010 | • | 0.00004 | 0.00-01 | 0.000349 | 0.000544 | | D10-1-Methylnapthalene | 46% | 55% | 69% | 73 | 06 | 59% | 66% | | 74% | | D12-Perylene | 46% | 55% | 52% | 39 | | 76% | 20% | | 59% | | LAB SURROGATE RECOVERY | | | 0270 | 00 | ,, | 7070 | 20% | | 39% | | D8-Naphthalene | 22% | 29% | 35% | 39 | 06 | 28% | 46% | | 000/ | | D10-Acenaphthene | 52% | 69% | 74% | 84 | | 77% | 76% | | 33% | | D10-Fluorene | 54% | 75% | 77% | 89 | | 86% | 76%
81% | | 80% | | D10-Phenanthrene | 58% | 83% | 83% | 95 | | 96% | 81%
85% | | 88% | | D10-Anthracene | 56% | 77% | 77% | 811 | | | | | 95% | | D10-Fluoranthene | 57% | 82% | 73% | 92 | | 85% | 69% | | 79% | | D10-Pyrene | 59% | 83% | 73%
73% | | | 96%
06% | 84% | | 95% | | D12-Benz(a)anthracene | 52% | 80% | 73%
64% | 90 [,]
93 [,] | | 96% | 84% | | 92% | | D12-Chrysene | 52%
54% | 83% | | | | 97% | 74% | | 87% | | D12-Benzo(a)pyrene | 48% | 80% | 64%
56% | 97 ⁴
80 ⁴ | | 103%
85% | 82%
49% | | 95%
52% | Note(a): Values shown are the detection limits which were calculated as 2.5 times the baseline noise level. | | | ı | |--|--|---| | | | | | | | | | | | | | Marco | | Ag | As | Ba | 8 | Cr | Cu | ij | Æ | ž | £ | Se | Zn | |--|--|--|-----------------|------------------|------------------|----------------|------------------|----------------------|-----------------|---------------|----------------------------|-----------|-----------| | The second interval of the control | Run 4 | | | | | | | | | | | | | | Control Conjugates, up (1.5) CA12 CA23 (1.5) TA3 <th< td=""><td>Rinses and filter, ug</td><td><135</td><td>333</td><td>438</td><td>176</td><td>331</td><td>700 8</td><td>V</td><td>200</td><td>700</td><td>6</td><td>8</td><td>940</td></th<> | Rinses and filter, ug | <135 | 333 | 438 | 176 | 331 | 700 8 | V | 200 | 700 | 6 | 8 | 940 | | Total benjamer, at all the parameters benjamers benjamer | Nitric acid impingers, up | <1.63 | <8.29 | 1.05 | 9 | 167 | 737, | 2 6 | 1.69 | 60/, | 100,6 | <u>\$</u> | 078,00 | | Communication, updated Colored | KMnO4 impingers, ug | A
A | ¥. | AN. | ¥ Z | Ą | NA NA | 1.13 | Ŝ. | À N | 0.5
4V | 7 V | † 42
- | | Communicity, uniquement | Total, ug | <137 | 333 | 439 | 178 | 332 | 4,229 | 4.34 | 806 | 1.791 | 9.535 | 1.015 | 55.959 | | Exemple Part Colonest Col | Concentration, ug/dscm | <147 | 357 | 470 | 191 | 356 | 4,533 | 4.65 | 974 | 1,920 | 10,219 | 1,087 | 59,978 | | December 1, 19, 19, 19, 19, 19, 19, 19, 19, 19, | Emissions, Ib/hr | <0.00664 | 0.0161 | 0.0213 | 0.00863 | 0.0161 | 0.205 | 0.000210 | 0.0440 | 0.0869 | 0.462 | 0.0492 | 2.71 | | Notice and implicant, up C-12-15 | Outlet | , | | | | | | | | | | | | | Notice and implement, and controlled minimature, controlled minimature, and | Rinses and filter, ug | <21.5 | 101 | 18.2 | 38.4 | 493 | 44.2 | ¥
¥ | 9.09 | 2,044 | 106 | 5,364 | 53.0 | | Control transfers, up Cont | Nitric acid impingers, ug | <1.63 | < 8.29 | 1.74 | 0.921 | 1.81 | 1.84 | <2.27 | 8.40 | 2.60 | 39.1 | 2.83 | 11.4 | | Particular Par | KMnO4 impingers, ug | Y Y | ₹
Z | ¥
Z | Ϋ́ | Y
Y | Ϋ́ | 6.90 | ۷ | A
A | Ϋ́ | A
A | Ą | | District Concession Concess | Total, ug | < 23.1 | 101 | 19.9 | 39.4 | 495 | 46.1 | < 9.17 | 69.0 | 2,046 | 145 | 5,367 | 64.4 | | Marie and filter, up C702 T79 539 392 C388 9,310 NA 1,451 1,957 14,227 2,026 No. of a cand project, up C403 C404 | Concentration, ug/dscm
Emissions, lb/hr | < 0.000356 | 26.4
0.00156 | 5.20
0.000307 | 10.3
0.000606 | 129
0.00763 | 12.0
0.000710 | < 2.39
< 0.000141 | 18.0
0.00106 | 534 | 37.8 | 1,401 | 16.8 | | March and implicant, up | | | | | | | | | | | | | | | Hintee and filter, ug | Run 5 | | | | | | | | | | | | | | With self impligate, up | <u>Infet</u> | ţ | ļ | | , | • | | | | | | | | | March Impligative, up | Hinses and filter, ug | 102</td <td>67.7</td> <td>536</td> <td>392</td> <td>< 389</td> <td>9,310</td> <td>VA.</td> <td>1,451</td> <td>1,967</td> <td>14,287</td> <td>2,026</td> <td>78,210</td> | 67.7 | 536 | 392 | < 389 | 9,310 | VA. | 1,451 | 1,967 | 14,287 | 2,026 | 78,210 | | Concentration, updatement of Any Name | Nitro acid impingers, ug | 21.63 | <8.29
*14 | 8/:1 | 2.84 | 1.02 | 6.28 | 4.55 | 7.21 | 4.17 | 4.54 | 15.1 | 19.1 | | Outday, updatem CATA 779 CATA 779 CATA 779 CATA 779 CATA CATA 779 CATA | House impingers, up | A 2 / | A C | A S | 4 Z | AN S | AN C | 4.60 | YN, | Y Y | Y Y | ¥ ; | ¥ | | Full continuation upwares Colid | Concentration and deam | 57. | 7.8 | 020 | C 60 0 | \ 390
\ 430 | 9,316 | 9.13 | 1,458 | 1,971 | 14,292 | 2,041 | 78,229 | | Particle | Contesions 15/5s | 1000 | 100 | 7+7 | 5 | 0/1/2 | 081,4 | 4.12 | 656 | 988 | 6,435 | 919 | 35,222 | | Hittee and filter, ug | Outlet | \$ 0.0× | 0.0103 | 5.0.0 | 0.00629 | <0.00818 | 0.195 | 0.000192 | 0.0306 | 0.0413 | 0.300 | 0.0428 |
 | | Nitric sold Impligates, ug C163 C201 | 1 | <21.5 | 51.4 | 21.4 | 82.3 | 652 | 24.9 | Ŷ. | 79.4 | 3 405 | 904 | 100 | 9 | | Total Jugical Functional Information and filter, ug of concentration, ug/decm A MA NA <td></td> <td><1.63</td> <td><8.29</td> <td>2.08</td> <td>0.917</td> <td>2.66</td> <td>1.94</td> <td>< 2.53</td> <td>2.74</td> <td>2.18</td> <td>4 63</td> <td>4.23</td> <td>15.0</td> | | <1.63 | <8.29 | 2.08 | 0.917 | 2.66 | 1.94 | < 2.53 | 2.74 | 2.18 | 4 63 | 4.23 | 15.0 | | Total, ug | | A
A | AN | AN
A | AN
A | A'N | NA
NA | 6.37 | Z X | ¥ Z | AN | Ą | Ψ. | | Colored Colo | | <23.1 | < 69.7 | 23.5 | 83.3 | 655 | 26.8 | < 8.90 | 82.1 | 3,497 | 11 | 5.395 | 94.0 | | Compact Comp | Concentration, ug/dscm | <5.83 | <15.1 | 5.94 | | 165 | 6.77 | < 2.25 | 20.7 | 883 | 27.9 | 1,362 | 16.2 | | rid implingers, ug < 877 | Emissions, lb/hr | < 0.00359 | < 0.000929 | 0.000366 | 0.00130 | 0.0102 | 0.000417 | 0.000138 | 0.00128 | 0.0544 | 0.00172 | 0.0840 | 0.000997 | | ridinglers, ug < 677 1,483 877 606 < 486 16,401 NA 2,747 3,765 24,703 2,612 1 1 1,483 877 605 < 486 16,401 NA | Run 6 | | | | | | | | | | | | | | Implingers, ug C1.63 C8.29 C3.36 C3.81 C3. | Rinses and filter, ug | <877 | 1,483 | 877 | 902 | <486 | 16.401 | AN | 2 747 | 3 765 | 24 703 | 2812 | 175 619 | | Implingers, ug | Nitric acid impingers, ug | <1.63 | <8.29 | 2.38 | 1.81 | 2.28 | 2.90 | 7.60 | 2.22 | 3.34 | 7.63 | 34.9 | 20.7 | | g (879) 1,483 673 < 488 16,404 14,30 2,749 3,768 24,711 2,647 1 rtration, ug/decm < 209 144 < 116 3,899 3,40 654 996 5,874 629 73 net lb/hr < 2,09 0.0166 0.00735 < 0.00691 0.199 0.000173 0.0333 0.0456 5,874 629 629 net lb/hr < 20.16 0.0166 0.00735 < 2.17 2.08 < 2.07 18.5 1.88 4.00 3.43 ind ling result < < 20.14 63.5 2.17 2.08 < 2.07 18.5 1.88 4.00 3.43 ind ling result NA NA NA NA NA NA NA NA NA ind ling result < < 3.50 < < 2.01 < < 3.62 < < 3.47 < < 4.00 3.43 | KMnO4 impingers, ug | Ą
Z | A
A | Y
Y | NA
AN | A'N | A
A | 6.70 | A N | Ą. | Y. | Y Y | ¥ Z | | reation, ug/dscm < 209 352 209 144 < 116 3,899 3.40 654 896 5,874 629 ris, lb/hr < 0.0166 0.00735 < 0.00591 0.199 0.000173 0.0333 0.0456 0.299 0.0320 ris, lb/hr < 20.14 69.5 23.5 125 731 62.1 NA 112 3,468 137 7,492 ind lingingers, ug < 1.63 < 28.29 1.36 1.31 2.17 2.08 < 2.08 1.85 1.86 4.00 3,430 ind lingingers, ug < 1.63 < 2.16 1.31 2.17 2.08 < 2.08 1.85 1.88 4.00 3,430 ind lingingers, ug < 1.65 < 23.0 733 64.2 < 14.0 130 NA | Total, ug | <879 | 1,483 | 879 | 607 | <488 | 16,404 | 14.30 | 2,749 | 3,768 | 24,711 | 2,647 | 175,633 | | 18. Ib/hr < 0.0106 0.00735 < 0.00591 0.199 0.000173 0.0456 0.299 0.0320 18. Ib/hr < 0.0106 0.00735 < 0.00591 0.199 0.000173 0.0333 0.0456 0.299 0.0320 10.000106 < 0.0106 0.00735 < 0.017 0.08 < 2.07 18.5 1.88 4.00 3.43 implingers, ug < 1.63 <
82.9 1.56 1.31 2.17 2.08 < 2.07 18.5 4.00 3.43 implingers, ug < 1.63 < 23.0 < 1.26 1.31 | Concentration, ug/dscm | < 209 | 352 | 209 | | <116 | 3,899 | 3.40 | 654 | 968 | 5,874 | 673 | 41,748 | | vig < 21.4 69.5 23.5 125 731 62.1 NA 112 3,468 137 7,492 vid impligers, ug < 1.63 < 82.9 1.56 1.31 2.17 2.08 < 2.07 18.5 1.88 4.00 3,43 impligers, ug < 1.63 < 82.9 1.56 1.31 2.17 2.08 < 2.07 18.5 1.88 4.00 3,43 impligers, ug NA | Emissions, Ib/hr | <0.0106 | 0.0180 | 0.0106 | 0.00735 | < 0.00591 | 0.199 | 0.000173 | 0.0333 | 0.0456 | 0.299 | 0.0320 | 2.13 | | Main teach Mai | Biness and filter | A 16.2 | 4 | 3 60 | 1 25 | 121 | 100 | 414 | • | 400 | , | 6 | | | implingers, ug NA | Nitric acid impinaers, ua | <1.63 | <8.29 | 1.56 | 1.31 | 2.17 | 2 OB | 70 < > | 1 8 L | 3,400
1.88 | <u> </u> | 7,492 | 58.3 | | g <23.0 <77.8 25.1 126 733 64.2 <14.0 130 3.470 141 7,495 restion, ug/dscm <5.95 <20.1 6.49 32.6 190 16.6 <3.62 33.7 898 36.6 1,339 re, lb/hr <0.000358 <0.00121 0.00196 0.0114 0.00100 <0.00217 0.00540 0.00220 0.117 0.0 md filter, ug <2.15 29.3 1.31 8.06 <1.05 1.99 NA 0.767 84.0 54.2 22.5 st -6, ug <4.7 <8.29 1.32 <0.18 <2.46 <1.54 <1.23 <0.280 0.963 1.84 <2.24 a <66.62 <37.6 <2.63 <6.05 <3.51 <3.51 <1.23 <1.047 <84.9 <6.0 <2.25 < | KMnO4 impingers, ua | AN | AN. | A N | ¥ Z | AN A | P A | 11.9 | 9 N | 92 | 8 | 5 - S | 7 7 | | ration, ug/dscm <5.95 <20.1 6.49 32.6 190 16.6 <3.62 33.7 818 1.31 1.339 1.339 1.339 1.340 1.339 1.340 1.339 1.340 1.339 1.340 | Total, ug | < 23.0 | <77.8 | 25.1 | 126 | 733 | 64.2 | < 14.0 | 5 | 3 470 | 7 7 | 7 405 | ¥ F | | 1st, lb/hr < 0.000358 < 0.00121 0.00196 0.0114 0.00100 < 0.00217 0.0540 0.00220 0.117 0.0 Ind filter, ug < 2.15 29.3 1.31 8.06 < 1.05 1.99 NA 0.767 84.0 54.2 22.5 Indication 4.47 < 8.29 1.32 < 0.18 2.46 < 1.54 < 1.23 0.280 0.963 1.84 < 2.24 Indication < 2.63 8.06 < 3.51 < 3.53 < 1.23 1.047 84.9 56.0 22.5 < 1.56 | Concentration, ug/dscm | < 5.95 | < 20.1 | 6.49 | 32.6 | 190 | 16.6 | < 3.62 | 33.7 | 898 | 36.6 | 1 939 | 17.7 | | ind filter, ug <2.15 29.3 1.31 8.06 <1.05 1.99 NA 0.767 84.0 54.2 22.5 rs 1-6, ug 4.47 <8.29 1.32 <0.18 2.46 <1.54 <1.23 0.280 0.963 1.84 <2.24 31 <6.62 <37.6 2.63 8.06 <3.51 <3.53 <1.23 1.047 84.9 56.0 22.5 | Emissions, lb/hr | < 0.000358 | < 0.00121 | 0.000391 | | 0.0114 | 0.00100 | < 0.00217 | 0.00203 | 0.0540 | 0.00220 | 0.117 | 0.00105 | | Ind filter, ug <2.15 29.3 1.31 8.06 <1.05 1.99 NA 0.767 84.0 64.2 22.5 1.81 | Blank train | | | | | | | | | | | | | | 1-6, ug 4.47 <8.29 1.32 <0.18 2.46 <1.54 <1,23 0.280 0.963 1.84 <2.24 <2.24 <6.52 <37.6 2.63 8.06 <3.51 <3.53 <1.047 84.9 56.0 22.5 | Rinses and filter, ug | < 2.15 | 29.3 | 1.31 | 8.06 | <1.05 | 1.99 | A
A | 0.767 | 84.0 | 54.2 | 22.5 | < 6.29 | | <6.6.2 <37.6 2.63 8.06 <3.51 <3.53 <1.23 1.047 84.9 56.0 22.5 | Impingers 1-6, ug | 4.47 | < 8.29 | 1.32 | <0.18 | 2.46 | <1.54 | <1.23 | 0.280 | 0.963 | -
-
-
-
-
- | < 2.24 | 4.84 | | | Total, ug | < 6.62 | <37.6 | 2.63 | 8.06 | <3.51 | <3.53 | <1.23 | 1.047 | 84.9 | 56.0 | 22.5 | <11.13 | NA = Not applicable. For Hg, this fraction was not analyzed due to holding time exceedance. Total mercury emissions are therefore conservative. TABLE 4-17. SITE B -- CONTINUOUS EMISSION MEASUREMENTS | | | | | T | | T | | | 12% CO | | |-------|--------|-----|----------------|-----------------|--------|-----------------|-----------------|--------|-----------------|-----------------| | Run 4 | Inlet | | O ₂ | CO ₂ | со | SO ₂ | NO _x | СО | SO ₂ | NO _x | | | | Avg | 4.8 | 12.4 | 2538.4 | 405.1 | 880.1 | 2494.0 | 393.7 | 851.7 | | | | Max | 6.9 | 14.8 | 3966.4 | 533.2 | 1160.0 | 4598.9 | 518.2 | 1045.9 | | | | Min | 3.9 | 10.2 | 1252.2 | 278.8 | 700.0 | 1030.0 | 281.3 | 680.8 | | | | | | | | | | | | | | | Outlet | | | | | | | | | | | | | Avg | 6.8 | 10.4 | 2029.0 | 117.5 | 822.1 | 2342.3 | 135.6 | 948.1 | | ···· | | Max | 8.5 | 10.5 | 2111.9 | 152.9 | 980.9 | 2601.5 | 175.4 | 1122.1 | | | | Min | 4.7 | 9.6 | 1452.3 | 83.6 | 698.6 | 1666.8 | 97.4 | 809.2 | | | | | | | | | | | | | | Run 5 | Inlet | | O ₂ | CO ₂ | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | | Avg | 13.9 | 5.6 | 1746.8 | 80.4 | 530.8 | 3915.7 | 199.9 | 1215.9 | | | | Max | 15.6 | 8.7 | 3060.7 | 106.6 | 953.0 | 7283.9 | 241.4 | 1684.2 | | | | Min | 10.0 | 2.0 | 783.2 | 44.9 | 206.0 | 1453.1 | 130.0 | 613.4 | | | | | | | | | | | | | | | Outlet | | | | | | | | | | | | | Avg | 7.5 | 10.4 | 2001.1 | 38.4 | 541.3 | 2314.5 | 44.4 | 625.0 | | | | Max | 8.0 | 10.5 | 2138.7 | 57.5 | 1043.6 | 2553.7 | 66.3 | 1198.4 | | | | Min | 7.0 | 10.1 | 147.8 | 25.6 | 242.8 | 169.6 | 29.7 | 288.8 | | | | | | | | | | | | | | Run 6 | Inlet | | O ₂ | CO ₂ | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | | Avg | 10.8 | 7.9 | 1919.1 | 254.9 | 579.9 | 2878.7 | 382.4 | 881.0 | | | | Max | 13.0 | 8.5 | 4856.0 | 525.1 | 1096.0 | 7295.9 | 782.8 | 1844.6 | | | | Min | 9.5 | 7.0 | 272.9 | 129.5 | 247.0 | 409.9 | 199.0 | 368.2 | | | | | | | | | | | | | | | Outlet | | | | | | | | | | | | | Avg | 7.2 | 10.3 | 1762.5 | 92.3 | 668.2 | 2046.3 | 107.1 | 774.2 | | | | Max | 7.7 | 10.5 | 2011.9 | 137.7 | 1314.2 | 2399.9 | 160.7 | 1552.2 | | | | Min | 7.0 | 10.1 | 14.9 | 66.1 | 205.9 | 17.7 | 76.9 | 243.4 | | | | ı | |--|--|---| ## 4.3 DRUM RECONDITIONING FACILITIES #### 4.3.1 Site C #### 4.3.1.1 Process Description Site C reconditions 55-gal steel drums for a variety of clients. Drums are first heat-treated to remove exterior paint, residual contents, and the interior coating. Then the drums are shot-blasted to exposed bare steel as a base surface. Finally, the drums are given an interior coating and an exterior coat of paint. The facility has an inventory of its own drums, but all drums processed during the testing program were owned by clients who requested quick reconditioning of their drums. A schematic of Site C is presented in Figure 4-3. This facility operates on a quick turnaround basis, with virtually no advance warning. A vast majority of reconditioned drums are requested on a same day or next day basis. All the drums used during this test program were delivered to the facility in truck trailers, and the trailers were unloaded directly onto the production line. Generally, the facility operates one 8- to 10-hr shift per day. The heat-treating system could be turned on and be operational in approximately 30 min. Operating conditions for Site C are presented in Table 4-18. All drums processed during this test program were of the open top variety rather than closed top drums with a bung hole. Barrels were opened, the lid removed, and each drum was turned upside down directly in front of the mouth of the kiln. Drums with too much residue were emptied into a receptacle for disposal before introduction to the kiln. A drum lid was placed atop each drum before it entered the kiln. The rate of drums fed into the kiln was judged by the secondary combustion chamber (SCC) exit temperature. Since the amount of natural gas to the kiln was constant, fluctuations in SCC exit temperature were due to drums and their contents. The SCC exit temperature was measured at the point the combustion gas exited the SCC on its way to the "APCD," i.e., afterburner. The SCC exit temperature was mandated by the AQMD permit and was set at 1700°F. At Site C, drums entered a preheat zone of 25 ft before the hot zone. The hot zone had six natural gas flame jets on each side over approximately 30 ft. A cool-down zone of approximately 40 ft followed the hot zone. Combustion gas exited the top of the center of hot zone and were ducted to the SCC. At this point, 99% pure oxygen was injected to the system. Oxygen served to reduce the amount of combustion air required by the system. This reportedly resulted in overall cost savings by reducing maintenance and replacement costs for the i.d. fan and reduced wear of refractory brick. The SCC had three natural gas burners at the exit aligned 120° to each other and perpendicular to the flow of the gas stream. The combustion gas stream passed through a
heat exchanger to recover heat in the form of steam. Steam was produced but not used by the facility; it was vented to MRI-M\R9420-01 4-27 91-26 SEV has scm 2 080191 Site C: Drum Reconditioner Process Diagram Figure 4-3 TABLE 4-18. SITE C - PROCESS OPERATING CONDITIONS | Parameter | Units | Run 7 | Run 8 | Run 9 | |----------------------------------|-------|-------|-------|-------| | Burner atomizer feed pressure | psi | 5 | 5 | 5 | | Burner temperature | °F | 1,600 | 1,536 | 1,563 | | Secondary chamber temperature | °F | 1,664 | 1,728 | 1,725 | | Air velocity/O ₂ | psi | 8 | 8 | 8 | | Waste heat boiler steam pressure | psi | 78 | 95 | 80 | the atmosphere. Combustion gas passed from the WHB through an i.d. fan and out the 28-ft-tall, 18-in diameter stack. #### 4.3.1.2 Sampling The facility operated in a normal fashion during the test program. Workdays started at 6 a.m. and generally ended at 2:30 p.m. Run 8, however, ended at 10:30 a.m., when the facility ran out of work for the day. A majority of the drums processed had contained industrial chemicals. Very few containing food or other substances were processed. Table 4-19 lists the contents of drums processed during selected periods of Runs 7, 8, and 9. Sampling was conducted only at the outlet of the stack. Organics and metals trains were run each day as were CEMs. During the recovery of the filter from the Run 9 metals train, some of the particulate matter may not have been completely recovered. This particulate matter loss was estimated by the field sampling crew chief to be less than 1% of the total filter particulate collected. Thus the reported metals results for Run 8 may be lower than actual concentrations. During Run 9, sampling was suspended while the facility fixed a drum jam in the drum burner. No other sampling deviations occurred. ### 4.3.1.3 Analysis Results—Site C Data on outlet measurements of moisture content, duct/stack temperature, and velocity were obtained are provided in Table 4-20. The average flow rates, measured by the trains, identified by run number and location, are also given, and was used to calculate PCDDs and PCDFs, PAHs, and metals emissions. Dioxin and Furan Emissions. Table 4-21 presents the dioxin and furan results by homologs while Table 4-22 presents the 2,3,7,8-substituted data. In conjunction with the gas sample volumes, the concentrations and emission rates of dioxins and furans in the stack gas were calculated and are presented in these tables. In Table 4-23, using ARB's 2,3,7,8-TCDD/TCDF toxic equivalency factors, each 2,3,7,8-substituted TCDD/TCDF congener was converted to its 2,3,7,8-TCDD/TCDF equivalent, and the total 2,3,7,8-TCDD/TCDF equivalent concentration and emission rate were determined. Polycyclic Aromatic Hydrocarbon Emissions. Table 4-24 presents the concentrations found for 17 PAHs, and the emission rates were also calculated. Metals Emissions. Table 4-25 presents the concentrations and emissions for the 12 metals of interest. MRI-M\R9420-01 4-30 # Table 4-19. DRUMS RECONDITIONED DURING SAMPLING - SITE C Contents Butanol, Ethanol, Cellulose Solvents White Paint Arbek Lo VOC Stain White Lacquer Primer Struct Stuco Finish Clear Sanding Sealer Solvent Stain Base Satin Stain White Pitch Sealer Rustic Medium Stain Acrylic Flat White Putty VOC 2.23 Contact Adhesive w/Toluene, Hexane and Acetane Ebony Black Extender, Epoxy Resin, Inorganic Pigments, Aromatics Paint High Solids AAR Solvent Type Spray Grade Adhesive Paint Additive - Xvlene Ink Solution - Flammable Liquid D001 Metallic Silver Paint Orange Paint AQ/GM Metallic Gold Paint Burger King Red Paint Surfactant, Wetting Agent Detergent Soln Foam Control Agent Drew Plus L-475 Colloid 697 Foammaster w/Petroleum Derivative Rheology Modifier Waste Silvent EPAN Manganese Chloride Flakes Wood Stain - Dark Sealer Precoate Sealer Banana Puree Paint and Water Gantree ES-225 CoPolymer New Shell Red Industrial Enamel Resin Solution UN1866 Whole Sliced Strawberries Isopropanol Anti Skinning Agent w/Methyethyl Ketoxime Acetone Polypropylene Glycol Cosperse 70 Dispersing & Grinding Aid Contains Mineral Spirits TABLE 4-20. SITE C - OUTLET SUMMARY DATA | | Sampling
time
(min) | Gas
volume
sampled
(dscm) | Moisture
content
(% vol) | Average
stack
temp
(C) | Stack
velocity
(m/sec) | Stack flow rate (dscm/min) | |-----------|---------------------------|------------------------------------|--------------------------------|----------------------------------|------------------------------|----------------------------| | Run 7 | | | | | - | <u> </u> | | MM-Outlet | 162 | 3.807 | 17.2 | 306 | 43.5 | 181 | | SV-Outlet | 162 | 2.021 | 17.9 | 295 | 40.3 | 170 | | Run 8 | | | | | | | | MM-Outlet | 96 | 2.167 | 13.0 | 339 | 42.9 | 178 | | SV-Outlet | 108 | 1.266 | 14.1 | 313 | 40.9 | 175 | | Run 9 | | | | | | | | MM-Outlet | 186 | 4.172 | 16.1 | 282 | 40.3 | 177 | | SV-Outlet | 186 | 2.315 | 15.6 | 301 | 41.4 | 177 | MM = Multiple metals sampling train, ie. method 436 train. SV = Semivolatile sampling train, ie. combined method 428 and 429 train. TABLE 4-21. SITE C - DIOXIN/FURAN RESULTS FOR MM5-SV SAMPLES | Analyte | Blank
train | Run 7
Outlet | Run 8 | Run 9 | |-------------------------------------|----------------------|-----------------|----------------|-------------------| | | | Outlet | Outlet | Outlet | | Sample volume (dscm) | | 2.021 | 1.266 | 2.315 | | Stack flow rate (dscm/m) | | 170 | 175 | 177 | | Concentration CO2 (%) | | 4.1 | 4.2 | 3.5 | | Dioxins (pg) | | | | | | TCDD | 204 | 89,200 | 56,400 | 47,600 | | PeCDD | 51.1 | 97,200 | 51,700 | 54,300 | | HxCDD | 173 | 195,000 | 82,600 | 114,000 | | HpCDD | 3,830 | 107,000 | 42,700 | 70,300 | | OCDD | 42,400 | 45,300 | 18,400 | 34,700 | | Total (pg) | 46,658 | 533,700 | 251,800 | 320,900 | | Total (ng/dscm) | 25.0 ^b | 264 | 199 | 139 | | Total (ng/dscm @ 12% CO2) | 76.2 | 773 | 568 | 475 | | Total (lb/hr) | 5.75E-07 | 5.94E-06 | 4.60E-06 | 3.25E-06 | | Furans (pg) | | | | | | TCDF | 4.24 a | 462,000 | 257,000 | 296,000 | | PeCDF | 4.24 a | 224,000 | 162,000 | 167,000 | | HxCDF | 11.4 | 127,000 | 55,900 | 73,900 | | HpCDF | 174 | 68,000 | 23,900 | 45,200 | | OCDF | 239 | 6.72 a | 2.30 a | 4.94 | | Total (pg) | 430 | 881,000 | 498,800 | | | Total (ng/dscm) | 0.230 b | 436 | 498,800
394 | 582,100 | | Total (ng/dscm @ 12% CO2) | 0.703 | 1,276 | 1126 | 251 | | Total (lb/hr) | 5.30E-09 | 9.80E-06 | 9.12E-06 | 862
5.89E-06 | | Total Dioxins and Furans | | | | | | Conc. (ng/dscm @ 12% CO2) | 76.9 | 2,049 | 1,694 | | | Emission rate (lb/hr) | 5.80E-07 | 1.57E-05 | 1.37E-05 | 1,337
9.13E-06 | | Surrogate recovery (%) | | | | | | I3C-2,3,7,8-TCDF | 110 | 440 | 404 | عديد
 | | 13C-2,3,7,8-TCDD | 112 | 119
99 | 121 | 118 | | 3C-1,2,3,7,8-PeCDF | 98 | 112 | 100 | 105 | | I3C-1,2,3,7,8-PeCDD | 103 | · · | 112 | 116 | | 3C-1,2,3,4,7,8-HxCDF | 129 | 103
144 | 104 | 118 | | 3C-1,2,3,6,7,8-HxCDD | 123 | 111 | 121 | 141 | | 3C-1,2,3,4,6,7,8-HpCDF | 129 | 106 | 94
07 | 110 | | 3C-1,2,3,4,6,7,8-HpCDD | 124 | 121 | 97 | 114 | | 3C-12-OCDD | 133 | 112 | 98
05 | 123 | | 7CI-2,3,7,8-TCDD ° | 88 | 94 | 95
00 | 99 | | 3C-2,3,4,7,8-PeCDF ^c | 91 | | 99 | 103 | | 3C-1,2,3,6,7,8-HxCDF ° | 73 | 88
75 | 94 | 95 | | 3C-1,2,3,4,7,8-HxCDD ^c | 73
94 | 75 | 73 | 64 | | 3C-1,2,3,4,7,8,9-HpCDF ^c | 9 4
82 | 99 | 104 | 106 | | | 02 | 91 | 97 | 87 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. Note: Outlet samples were collected from the stack of number 1 cell of an 8-cell baghouse. The emissions calculated are only from this one stack. b. Blank train "emissions" calculated using average flow rates from each location. c. Field surrogates spiked into XAD prior to sample collection. TABLE 4-22. SITE C - 2,3,7,8-SUBSTITUTED DIOXIN/FURAN FOR MM5-SV SAMPLES | Analyte | Blank
train | | Run 7
Outlet | | Run 8
Outlet | | Run 9
Outlet | | |--|----------------|---|-----------------|---|-----------------|---|-----------------|----------| | Sample volume (dscm) | | | 2.021 | | 1.266 | | 2.315 | <u> </u> | | Stack flow rate (dscm/m) | | | 170 | | 175 | | 177 | , | | Concentration CO2 (%) | | | 4.1 | | 4.2 | | 3.5 | ; | | Dioxins (pg) | | | | | | | | | | 2,3,7,8-TCDD | 15.5 | | 20.2 | а | 540 | | 496 | i | | 1,2,3,7,8-PeCDD | 5.16 | а | 5,250 | | 2,630 | | 2,890 | | | 1,2,3,4,7,8-HxCDD | 13.6 | a | 6,720 | | 2,950 | | 3,860 | | | 1,2,3,6,7,8-HxCDD | 32.5 | | 14,700 | | 6,440 | | 9,280 | | | 1,2,3,7,8,9-HxCDD | 9.60 | а | 15,600 | | 7,610 | | 9,550 | | | 1,2,3,4,6,7,8-HpCDD | 1,990 | | 51,000 | | 20,600 | | 34,200 | | | 1,2,3,4,6,7,8,9-OCDD | 42,400 | | 45,300 | | 18,400 | | 34,700 | | | Total (pg) | 44,452 | | 138,580 | | 59,170 | | 94,976 | | | Total (ng/dscm) | 23.8 | | 68.6 | | 46.7 | | 94,976
41.0 | | | Total (ng/dscm @ 12% CO2) | 72.6 | | 201 | | 134 | | 141 | | | Total (lb/hr) | 5.48E-07 | | 1.54E-06 | ; | 1.08E-06 | | 9.61E-07 | | | Furans (pg) | | | | | | | 0.01E-07 | | | 2,3,7,8-TCDF | 7.86 | а | 94,500 | | 71,300 | 2 | 66,500 | | | 1,2,3,7,8-PeCDF | 4.94 | - | 18,600 | | 9,680 | 4 | 11,800 | | | 2,3,4,7,8-PeCDF | 3.72 | a | 28,900 | а | 16,000 | | 20,000 | | | 1,2,3,4,7,8-HxCDF | 6.51 | _ | 34,500 | - | 14,700 | | 20,900 | | | 1,2,3,6,7,8-HxCDF | 4.33 | | 15,900 | | 6,390 | | 8.430 | | | 2,3,4,6,7,8-HxCDF | 2.4 | а | 18,800 | | 7,990 | | 11,500 | | | 1,2,3,7,8,9-HxCDF | 4.10 | | 4,440 | | 1,640 | | 2,760 | | | 1,2,3,4,6,7,8-HpCDF | 49.4 | _ | 46,100 | | 17,300 | | 30,100 | | | 1,2,3,4,7,8,9-HpCDF | 6.64 | | 5,340 | | 1,680 | | 3.850 | | | 1,2,3,4,6,7,8,9-OCDF | 239 | | 13,200 | а | 3,780 | а | 9,500 | | | Total (pg) | 317 | - | 259,230 | | 112,920 | _ | 170.590 | ~ | | Total (ng/dscm) | 0.170 | | 128 | | 89.2 | | 73.7 | | | Total (ng/dscm @ 12% CO2) | 0.518 | | 375 | | 255 | | 253 | | | Total (lb/hr) | 3.91E-09 | | 2.88E-06 | | 2.06E-06 | | 1.73E-06 | | | Total
2,3,7,8-substituted dioxin/furan | | | | | | | 01-00 | | | Conc. (ng/dscm @ 12% CO2) | 73.1 | | 576 | | 388 | | 200 | | | Emission rate (lb/hr) | 5.52E-07 | | 4.43E-06 | | 3.15E-06 | | 393
2.69E-06 | | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. TABLE 4-23. SITE C - 2,3,7,8-TCDD EQUIVALENTS RESULTS | | | | Run 7 | | | Run 8 | | | Run 9 | | |---|-----------|--------------------|---|-----------|---------------|---|-------------|-----------------------|---|-----------------| | | | | Outlet | | | Outlet | | | Outlet | | | | | Sample volu | Sample volume (dscm) = Stack flow rate (dscm/m) | 2.021 | Sample volu | Sample volume (dscm) = Stack flow rate (dscm/m) | 1.266 | Sample volu | Sample volume (dscm) = Stack flow rate (dscm/m) | 2.315 | | | ARB | Concentration | ration CO2 (%) = | 4.1 | Concentration | Concentration CO2 (%) = | 4.2 | Concentration CO2 (%) | on CO2 (%) = | 3.5 | | | equiv. | Total | | Equiv. | Total | | Equiv. | Total | | Equiv. | | Analyte | factor | (bd) | (ug/dscm) | (ug/dscm) | (bd) | (mosp/bu) | (ug/dscm) | (bd) | (mg/dscm) | (ug/dscm) | | Dioxins | | | = | | | | | | | | | 2,3,7,8-TCDD | - | 20.2 | 0.01 | 0.01 | 540 | 0.43 | 0.43 | 496 | 0.21 | 0.21 | | 1,2,3,7,8-PeCDD | _ | 5,250 | 2.60 | 2.60 | 2,630 | 2.08 | 2.08 | 2.890 | 1.25 | 1.25 | | 1,2,3,4,7,8-HxCDD | 0.03 | 6,720 | 3.33 | 0.10 | 2,950 | 2.33 | 0.07 | 3.860 | 1.67 | 0.05 | | 1,2,3,6,7,8-HxCDD | 0.03 | | 7.27 | 0.22 | 6,440 | 5.09 | 0.15 | 9,280 | 4.01 | 0.12 | | 1,2,3,7,8,9-HxCDD | 0.03 | | 7.72 | 0.23 | 7,610 | 6.01 | 0.18 | 9,550 | 4.13 | 0.12 | | 1,2,3,4,6,7,8-HpCDD | 0.03 | | 25.24 | 0.76 | 20,600 | 16.27 | 0.49 | 34,200 | 14.77 | 0.44 | | OCDD | 0.03 | | 22.41 | 0.67 | 18,400 | 14.53 | 0.44 | 34,700 | 14.99 | 0.45 | | Furans | | | | | | | | | | | | 2,3,7,8-TCDF | - | 94,500 | 46.76 | 46.76 | 71,300 | 56.32 | 56.32 | 66.500 | 28.73 | 28 73 | | 1,2,3,7,8-PeCDF | - | 18,600 | 9.20 | 9.20 | 9,680 | 7.65 | 7.65 | 11,800 | 5.10 | 5.10 | | 2,3,4,7,8-PeCDF | _ | 28,900 | 14.30 | 14.30 | 16,000 | 12.64 | 12.64 | 20,000 | 8.64 | 8.64 | | 1,2,3,4,7,8-HxCDF | 0.03 | 34,500 | 17.07 | 0.51 | 14,700 | 11.61 | 0.35 | 20,900 | 9.03 | 0.27 | | 1,2,3,6,7,8-HxCDF | 0.03 | 15,900 | 7.87 | 0.24 | 6,390 | 5.05 | 0.15 | 8,430 | 3.64 | 0.11 | | 2,3,4,6,7,8-HxCDF | 0.03 | 18,800 | 9.30 | 0.28 | 7,990 | 6.31 | 0.19 | 11,500 | 4.97 | 0.15 | | 1,2,3,7,8,9-HxCDF | 0.03 | 4,440 | 2.20 | 0.02 | 1,640 | 1.30 | 0.0
40.0 | 2,760 | 1.19 | 9 | | 1,2,3,4,6,7,8-HpCDF | 0.03 | 46,100 | 22.81 | 0.68 | 17,300 | 13.67 | 0.41 | 30,100 | 13.00 | 0.39 | | 1,2,3,4,7,8,9-HpCDF | 0.03 | 5,340 | 2.64 | 0.08 | 1,680 | 1.33 | 0.0 | 3,850 | 1.66 | 0.05 | | OCDF | 0.03 | 13,200 | 6.53 | 0.20 | 3,780 | 2.99 | 0.0
80 | 9,500 | 4.10 | 0.12 | | Total 2,3,7,8-TCDD equivalent concentration (no/dscm) = | ation (no | = (m3sb/c | | 69
65 | | | 53 50 | | | 3 | | | | | | | | | | | | 41.00 | | concentration @ 12% CO2 (not/ecm) | | ent
'na/dscm) = | | 200 | | | 7. | | | , | | Emission (lb/hr) = | | | | 1.57E-06 | | | 1.24E-06 | | | 144
0 80E_07 | | | | | | | | | | | | 3.005-07 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. TABLE 4-24. SITE C - PAHS EMISSIONS RESULTS FOR MM5-SV SAMPLES | | Run 7 | | Run 8 | | Run 9 | | Blank
train | | |--------------------------------|----------|---|----------|---|----------|---|----------------|--------| | Sample volume (dscm) | 2.021 | | 1.266 | | 2.315 | | | | | Stack flow rate (dscm/m) | 170 | | 175 | | 177 | | | | | Concentration CO2 (%) | 4.1 | | 4.2 | | 3.5 | | | | | PAHs (ug) | | | | | | | | | | Naphthalene | 15.1 | | 24.1 | | 20.9 | | 12.4 | | | Acenaphthylene | 0.1 | а | 0.576 | | 0.343 | | | а | | Acenaphthene | 0.1 | a | 0.233 | | 0.306 | | 0.153 | u | | Fluorene | 0.319 | | 0.899 | | 0.627 | | 0.301 | | | Phenanthrene | 0.767 | | 1.78 | | 1.57 | | 0.317 | | | Anthracene | 0.907 | | 0.1 | а | 0.1 | а | 0.1 | | | Fluoranthene | 0.257 | | 0.501 | | 0.417 | | 0.145 | _ | | Pyrene | 0.115 | | 0.48 | | 0.294 | | 0.152 | | | Retene | 0.1 | а | 0.112 | | 0.1 | а | 0.1 | а | | Benz(a)anthracene | 0.1 | а | 0.185 | | 0.162 | | 0.181 | | | Chrysene | 0.1 | а | 0.221 | | 0.185 | | 0.15 | | | Benzo(b)fluoranthene | 0.1 | а | 0.1 | а | 0.1 | а | 0.1 | а | | Benzo(k)fluoranthene | 0.1 | а | 0.1 | а | 0.1 | а | 0.1 | а | | Benzo(a)pyrene | 0.1 | а | 0.232 | | 0.194 | | 0.198 | | | Indeno(1,2,3-cd)pyrene | 0.1 | а | 0.1 | а | 0.1 | а | 0.1 | а | | Dibenz(a,h)anthracene | 0.1 | а | 0.1 | а | 0.1 | а | 0.1 | а | | Benzo(ghi)perylene | 0.1 | а | 0.1 | а | 0.1 | а | 0.1 | а | | Total PAHs (ug) | 18.6 | | 29.9 | | 25.7 | | 14.8 | | | Total PAHs (ug/dscm) | 9.19 | | 23.6 | | 11.1 | | 13.51 | | | Total PAHs (ug/dscm @ 12% CO2) | 26.9 | | 67.5 | | 38.1 | | 58.6 | | | Total PAHs (lb/hr) | 0.000207 | | 0.000547 | | 0.000260 | | 0.000205 | | | FIELD SURROGATE RECOVERY | | | | | | | | | | D10-1-Methylnapthalene | 34% |) | 32% |) | 79% |) | 65% | ,
D | | D12-Perylene | 49% | 1 | 79% |) | 74% |) | 74% | ó | | LAB SURROGATE RECOVERY | | | | | | | | | | D8-Naphthalene | 17% |) | 42% |) | 58% |) | 36% | ,
0 | | D10-Acenaphthene | 50% | 1 | 71% | | 84% | | 75% | | | D10-Fluorene | 62% | , | 76% | | 88% | | 76% | | | D10-Phenanthrene | 72% | , | 81% |) | 91% | | 77% | | | D10-Anthracene | 66% | ı | 80% |) | 86% | | 75% | | | D10-Fluoranthene | 73% | | 82% |) | 90% | | 75% | | | D10-Pyrene | 75% | ı | 82% | | 91% | | 78% | | | D12-Benz(a)anthracene | 57% | | 88% | | 85% | | 76% | | | D12-Chrysene | 68% | | 87% | | 92% | | 80% | | | D12-Benzo(a)pyrene | 55% | ı | 88% | | 79% | | 79% | | Note(a): Values shown are the detection limits which were calculated as 2.5 times the baseline noise levels. TABLE 4-25. SITE C - ANALYSIS RESULTS FOR MM5-MM (METALS) TRAIN | | Ag | As | Ba | Cq | Ċ | Cu | Hg | M | Z | £ | Se | Zn | |---------------------------|----------|---------------|---------|----------|-----------|----------|----------|----------|----------------|---------|--------|------------| | Run 7 | | | | | | | | | | | | | | Rinses and filter, ug | 126 | 890 | 490 | 355 | 415 | 146 | | 114 | 18,653 | 1,648 | 21,976 | 27.9 | | Nitric acid impingers, ug | 13.4 | <8.29 | 16.4 | 1.34 | 13.1 | <1.54 | 927 | 140 | 1.98 | 16.3 | A Z | 15.8 | | KMnO4 impingers, ug | Y
Y | ∀
Z | Y
Y | Y
Y | A
V | NA | | ¥ | Z | Ϋ́ | Y. | Y Y | | Total, ug | 140 | 890 | 203 | 356 | 428 | 146 | | 254 | 18,654 | 1,664 | 21,976 | 43.7 | | Concentration, ug/dscm | 36.8 | 234 | 133 | 93.5 | 113 | 38.5 | | 66.7 | 4,900 | 437 | 5,773 | 11.5 | | Emissions, Ib/hr | 0.000880 | 0.00560 | 0.00319 | 0.00224 | 0.00269 | 0.000921 | | 0.00160 | 0.117 | 0.0105 | 0.138 | 0.000275 | | Run 8 | | | | | | | | | | | | | | Rinses and filter, ug | 30.3 | 337 | 93.9 | 107 | 148 | 48.8 | AN | 38.7 | 7,257 | 228 | 8,370 | <6.29 | | Nitric acid impingers, ug | <1.63 | <8.29 | 35.0 | 0.970 | 5.51 | <1.54 | 66.2 | 4.80 | 1 . | 9.52 | 41.9 | 12.5 | | KMnO4 impingers, ug | NA | ΑN | Ϋ́ | Ą
Z | Ϋ́ | AN
AN | 14.9 | Ϋ́ | Y. | N
A | ¥2 | Ą. | | Total, ug | 30.3 | 337 | 129 | 108 | 153 | 48.8 | 81.1 | 43.5 | 7,258 | 238 | 8,411 | <18.8 | | Concentration, ug/dscm | 14.0 | 155 | 59.5 | 49.7 | 70.7 | 22.5 | 37.4 | 20.1 | 3,350 | 110 | 3,882 | < 8.68 | | Emissions, Ib/hr | 0.000329 | 0.00366 | 0.00140 | 0.001170 | 0.00167 | 0.000530 | 0.000881 | 0.000473 | 0.0789 | 0.00258 | 0.0914 | < 0.000208 | | Run 9 | | | | | | | | | | | | | | Rinses and filter, ug | 101 | 1,736 | 419 | 251 | <10.5 | 280 | AN | 63.0 | 20,208 | 176 | | 21.7 | | Nitric acid impingers, ug | <1.63 | <8.29 | 38.1 | 1.24 | 5.03 | 1.71 | 2540 | 4.38 | 1.54 | 22.3 | | 18,0 | | KMnO4 impingers, ug | Ϋ́ | Y
Y | Ą
X | Ą
V | A
A | Ą | 471 | A S | ٧ | NA | | Y. | | Total, ug | 101 | 1,736 | 457 | 252 | <15.5 | 282 | 3011 | 67.4 | 20,210 | 199 | | 39.6 | | Concentration, ug/dscm | 24.3 | 416 | 110 | 60.5 | <3.72 | 67.5 | 722 | 16.1 | 4,844 | 47.6 | | 9.50 | | Emissions, lb/hr | 0.000568 | 0.00974 | 0.00256 | 0.00142 | 0.0000870 | 0.00158 | 0.0169 | 0.000378 | 0.113 | 0.00111 | 0.0731 | 0.000222 | | Blank train | | | | | | | | | | | | | | Rinses and filter, ug | < 2.15 | 34.7 | 1.39 | 8.17 | <1.05 | 2.20 | ΑN | 0.896 | 85.6 | 54.5 | 25.4 | < 6.29 | | Nitric acid impingers, ug | <1.63 | < 8.29 | 0.913 | 0.197 | 1.45 | <1.54 | <1.33 | 0.669 | 0.573 | 8.07 | < 2.24 | 1.63 | | KMnO4 impingers, ug | Ϋ́ | Y
V | ٩ | A'N | AN | Ϋ́ | <0.411 | NA | Ϋ́ | AN | N
A | ¥ | | Total, ug | <3.78 | <43.0 | 2.30 | 8.37 | < 2.50 | <3.74 | <1.74 | 1.564 | 86.1 | 62.6 | 25.4 | <7.92 | | | | | | | | | | | | | | | NA = Not applicable. For Hg, this fraction was not analyzed due to holding time exceedance. Total mercury emissions are therefore conservative. Continuous Emission Measurements. During the semivolatile and metals emission sampling, continuous measurements were conducted at the inlet and outlet locations for CO, SO_2 , NO_x , O_2 , and CO_2 . Summary data for those measurements are presented in Table 4-26. Computer-generated graphs of the real time measurements are included in Appendix B. #### 4.3.2 Site D ## 4.3.2.1 Process Description Site D also reconditions 55-gal steel drums for a variety of clients. Drums are first heat-treated to remove exterior paint, residual contents, and the interior coating. Then the drums are shot-blasted to exposed bare steel as a base surface. Finally, the drums are given an interior coating and an exterior coat of paint. The facility has an inventory of its own drums and a combination of client drums and Site D drums were used during this test program. A schematic of Site D is presented in Figure 4-4. This facility operates on a quick turnaround basis, with little or no
advance warning. A majority of reconditioned drums are requested on a same day or next day basis. Some of the drums used during this test program were delivered to the facility in truck trailers, and the trailers were unloaded directly onto the production line. Other drums from the facility's inventory were used. Generally, the facility operates one 8- to 10-hr shift per day. The heat-treating system could be turned on and be operational in approximately 30 min. Operating conditions for Site D are presented in Table 4-27. All drums processed during this test program were of the open top variety rather than closed top drums with a bung hole. Barrels were opened, the lid removed, and each drum was turned upside down directly in front of the mouth of the kiln. Drums with too much residue were emptied into a receptacle for disposal before introduction to the kiln. A drum lid was placed atop each drum before it entered the kiln. The rate of drums fed into the kiln was judged by the secondary combustion chamber (SCC) exit temperature. Since the amount of natural gas to the kiln was constant, fluctuations in SCC exit temperature were due to drums and their contents. The SCC exit temperature was measured at the point the combustion gas exited the SCC on its way to the APCD. The SCC exit temperature was mandated by the AQMD permit and was set at 1700°F. MRI-M\R9420-01 4-38 | | | · | |--|--|---| • | TABLE 4-26. SITE C -- CONTINUOUS EMISSION MEASUREMENTS | | | | | | | | | 12% CO | 2 | |-------|-----|----------------|-----------------|-------|-----------------|-----------------|-------|-----------------|-----------------| | Run 7 | | O ₂ | CO2 | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | Avg | 16.1 | 4.1 | 5.3 | 4.8 | 48.6 | 16.7 | 12.2 | 143.0 | | | Max | 20.5 | 6.1 | 180.2 | 138.7 | 120.3 | 355.7 | 383.5 | 411.3 | | | Min | 11.9 | .6 | -6.2 | -3.4 | .6 | -23.5 | -67.4 | 3.2 | | | | | | | : | | | | | | Run 8 | | O ₂ | CO ₂ | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | Avg | 17.1 | 4.2 | 12.0 | 8.5 | 48.8 | 34.2 | 24.2 | 139.2 | | | Max | 19.5 | 5.1 | 18.0 | 28.5 | 60.6 | 54.0 | 94.2 | 198.1 | | | Min | 15.1 | 3.3 | 8.7 | 2.6 | 33.6 | 22.2 | 6.8 | 81.0 | | | | | | | | | | | | | Run 9 | | O ₂ | CO ₂ | СО | SO ₂ | NO _x | со | SO ₂ | NO _x | | | Avg | 18.3 | 3.5 | 9.5 | 13.2 | 38.3 | 33.4 | 44.8 | 135.0 | | | Max | 20.7 | 5.0 | 152.7 | 69.7 | 55.5 | 429.1 | 175.7 | 276.2 | | | Min | 15.6 | 2.1 | 4.9 | 5.5 | 21.7 | 15.8 | 20.1 | 79.1 | 91-26 SEV hos scm 3 080191 Site D: Drum Reconditioner Process Diagram Figure 4-4 TABLE 4-27. SITE D - PROCESS OPERATING CONDITIONS | Parameter | Units | Run 10 | Run 11 | Run 12 | |-------------------------------|-------|--------|--------|--------| | Burner temperature | °F | 1,150 | 1,163 | 1,204 | | Secondary chamber temperature | °F | 1,784 | 1,758 | 1,750 | | Air flow pressure | psi | 1 | 1 | 1 | At Site D, drums entered a preheat zone of 25 ft before the hot zone. The hot zone had six natural gas flame jets on each side over approximately 30 ft. A cool-down zone of approximately 45 ft followed the hot zone. Combustion gas exited the top of the center of hot zone and were ducted to the SCC. The SCC had four natural gas burners at the exit aligned 90° to each other and perpendicular to the flow of the gas stream. The combustion gas then passed through an i.d. fan and out the 26-ft, 24-in x 27-in rectangular stack. ### 4.3.2.2 Sampling The facility operated in a normal fashion during the test program. Workdays started at 5 a.m. and generally ended at 1:30 p.m. Run 10, however, ended at 1 p.m., when the facility ran out of work for the day. Sampling time for Run 10 was 30 min short for this reason. A majority of the drums processed had contained industrial chemicals. The rest had contained food or other substances. Table 4-28 lists the contents of drums processed during selected periods of Runs 10, 11, and 12. Sampling was conducted only at the outlet of the stack. Organics and metals trains were run each day as were CEMs. ## 4.3.2.3 Analysis Results—Site D Data on outlet measurements of moisture content, stack temperature, and velocity are provided in Table 4-29. The average flow rates, measured by the trains, identified by run number and location, are also given, and were used to calculate PCDDs and PCDFs, PAHs, and metals emissions. Dioxin and Furan Emissions. Table 4-30 presents the dioxin and furan results by homologs, while Table 4-31 presents the 2,3,7,8-substituted data. In conjunction with the gas sample volumes, the concentrations and emission rates of dioxins and furans in the stack gas were calculated and are provided in these tables. In Table 4-32, using ARB's 2,3,7,8-TCDD/TCDF toxic equivalency factors, each 2,3,7,8-substituted TCDD/TCDF congener was converted to its 2,3,7,8-TCDD/TCDF equivalent, and the total 2,3,7,8-TCDD/TCDF equivalent concentration and emission rate was determined. Polycyclic Aromatic Hydrocarbon Emissions. Table 4-33 presents the concentrations found for 17 PAHs, and the emission rates were also calculated. Metals Emissions. Table 4-34 presents the concentrations and emissions for the 12 metals of interest. # Table 4-28. DRUMS RECONDITIONED DURING SAMPLING - SITE D <u>Contents</u> Resin Solution Nutra Zirconium 18% Anti Skinning Agent with Methylethyl Ketoxime Linseed Oil Grapefruit Oil A Linseed Oil Product Lubricating Oil Salad Dressing Grape Juice Concentrate Surfactant Mayonnaise Carsonon N-9 Amway Xylene Hazardous Waste (not specified) Silcolube Valvoline Freon Cleaning Agent Castrol GTX Motor Oil Diethanol Amine TABLE 4-29. SITE D - OUTLET SUMMARY DATA | | Sampling
time
(min) | Gas
volume
sampled
(dscm) | Moisture
content
(% vol) | Average
stack
temp
(C) | Stack
velocity
(m/sec) | Stack flow rate (dscm/min) | |---------------|---------------------------|------------------------------------|--------------------------------|----------------------------------|------------------------------|----------------------------| | <u>Run 10</u> | | | | | | | | MM-Outlet | 150 | 2.505 | 7.0 | 286 | 29.5 | 361 | | SV-Outlet | 150 | 1.373 | 8.3 | 285 | 28.8 | 348 | | <u>Run 11</u> | | | | | | | | MM-Outlet | 180 | 3.037 | 7.6 | 284 | 28.3 | 347 | | SV-Outlet | 180 | 1.605 | 5.4 | 284 | 27.8 | 350 | | Run 12 | | | | | | | | MM-Outlet | 180 | 3.002 | 6.8 | 284 | 27.8 | 346 | | SV-Outlet | 180 | 1.698 | 5.4 | 285 | 27.8 | 351 | MM = Multiple metals sampling train, ie. method 436 train. SV = Semivolatile sampling train, ie. combined method 428 and 429 train. TABLE 4-30. SITE D - DIOXIN/FURAN RESULTS FOR MM5-SV SAMPLES | | Blank | Run 10 | Run 11 | Run 12 | |--------------------------------------|--------------------|----------|----------|------------| | Analyte | train | Outlet | Outlet | Outlet | | Sample volume (dscm) | | 1.373 | 1.605 | 1.698 | | Stack flow rate (dscm/m) | | 348 | 350 | 351 | | Concentration CO2 (%) | | 2.8 | 2.8 | 2.8 | | Dioxins (pg) | | | | | | TCDD | 197 | 6,080 | 4,290 | 3,770 | | PeCDD | 100 | 4,680 | 3,450 | 2,680 | | HxCDD | 108 | 7,770 | 6,610 | 3,420 | | HpCDD | 1,790 | 6,530 | 4,170 | 2,790 | | OCDD | 11,900 | 5,620 | 5,380 | 5,120 | | Total (pg) | 14,095 | 30,680 | 23,900 | 17,780 | | Total (ng/dscm) | 9.04 ^b | 22.3 | 14.9 | 10.5 | | Total (ng/dscm @ 12% CO2) | 38.8 | 95.8 | 63.8 | 44.9 | | Total (lb/hr) | 4.18E-07 | 1.03E-06 | 6.89E-07 | 4.86E-07 | | Furans (pg) | | | | | | TCDF | 28.8 | 10,500 | 6,740 | 6,740 | | PeCDF | 35.6 | 5,070 | 3,040 | 3260 | | HxCDF | 55.2 | 2,370 | 1,190 | 885 | | HpCDF | 98.8 | 2,730 | 950 | 773 | | OCDF | 181 | 2.48 a | 3.52 a | 5.56 | | Total (pg) | 399 | 20,671 | 11,922 | 11,661 | | Total (ng/dscm) | 0.256 ^b | 15.1 | 7.43 | 6.87 | | Total (ng/dscm @ 12% CO2) | 1.10 | 64.5 | 31.8 | 29.4 | | Total (lb/hr) | 1.19E-08 | 6.93E-07 | 3.44E-07 | 3.19E-07 | | Total Dioxins and Furans | | | | | | Conc. (ng/dscm @ 12% CO2) | 39.9 | 160 | 95.7 | 74.3 | | Emission rate (lb/hr) | 4.30E-07 | 1.72E-06 | 1.03E-06 | 8.05E-07 | | Surrogate recovery (%) | | | | | | 13C-2,3,7,8-TCDF | 94 | 106 | 97 | 89 | | 13C-2,3,7,8-TCDD | 90 | 92 | 90 | 82 | | 13C-1,2,3,7,8-PeCDF | 87 | 96 | 83 | 7 7 | | 13C-1,2,3,7,8-PeCDD | 89 | 97 | 86 | 78 | | 13C-1,2,3,4,7,8-HxCDF | 109 | 120 | 114 | 100 | | 13C-1,2,3,6,7,8-HxCDD | 100 | 100 | 93 | 92 | | 13C-1,2,3,4,6,7,8-HpCDF | 104 | 105 | 100 | 95 | | 13C-1,2,3,4,6,7,8-HpCDD | 95 | 110 | 100 | 94 | | 13C-12-OCDD | 105 | 105 | 87 | 89 | | 37CI-2,3,7,8-TCDD ^c | 94 | 100 | 89 | 94 | | 13C-2,3,4,7,8-PeCDF ^c | 86 | 89 | 89 | 93 | | 13C-1,2,3,6,7,8-HxCDF ^c | 73 | 68 | 68 | 76 | | 13C-1,2,3,4,7,8-HxCDD ^c | 95 | 101 | 99 | 104 | | 13C-1,2,3,4,7,8,9-HpCDF ^c | 74 | 87 | 83 | 96 | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. Note: Outlet samples were collected from the stack of number 1 cell of an 8-cell baghouse. The emissions calculated are only from this one stack. b. Blank train "emissions" calculated using average flow rates from each location. c. Field surrogates spiked into XAD prior to sample collection. TABLE 4-31. SITE D - 2,3,7,8-SUBSTITUTED DIOXIN/FURAN FOR MM5-SV SAMPLES | Analyte | Blank
train | | Run 10
Outlet | | Run 11
Outlet | | Run 12
Outlet | | |--|----------------|---|------------------|---|------------------|---|------------------|---| | Sample volume (dscm) | - | | 1.373 | - | 1.605 | | 1.698 | _ | | Stack flow rate (dscm/m) | | | 348 | | 350 | | 351 | | | Concentration CO2 (%) | | | 2.8 | | 2.8 | | 2.8 | | | Dioxins (pg) | | | | | | | | | | 2,3,7,8-TCDD | 18.2 | а | 26.4 | a | 8.16 | а | 10.4 | а | | 1,2,3,7,8-PeCDD | 7.8 | a | 217 | | 157 | | 117 | | | 1,2,3,4,7,8-HxCDD | 7.84 | а | 252 | а | 192 | | 124 | а | | 1,2,3,6,7,8-HxCDD | 32.5 | | 574 | | 424 | | 261 | | | 1,2,3,7,8,9-HxCDD | 4.78 | a | 700 | | 512 | | 306 | | | 1,2,3,4,6,7,8-HpCDD | 1,100 | | 3,360 |
 2,130 | | 1,490 | | | 1,2,3,4,6,7,8,9-OCDD | 11,900 | | 5,620 | | 5,380 | | 5,120 | | | Total (pg) | 13,052 | | 10,610 | | 8,799 | | 7,361 | | | Total (ng/dscm) | 8.37 | | 7.73 | | 5.48 | | 4.34 | | | Total (ng/dscm @ 12% CO2) | 35.9 | | 33.1 | | 23.5 | | 18.6 | | | Total (lb/hr) | 3.88E-07 | | 3.56E-07 | | 2.54E-07 | | 2.01E-07 | | | Furans (pg) | | | | | | | | | | 2,3,7,8-TCDF | 20.2 | а | 2,230 | | 1,350 | | 1,330 | | | 1,2,3,7,8-PeCDF | 10.4 | a | 314 | | 184 | | 195 | | | 2,3,4,7,8-PeCDF | 3.6 | а | 560 | а | 310 | а | 280 | | | 1,2,3,4,7,8-HxCDF | 15.4 | а | 809 | | 418 | | 337 | | | 1,2,3,6,7,8-HxCDF | 8.67 | | 293 | | 158 | | 160 | а | | 2,3,4,6,7,8-HxCDF | 7.49 | | 526 | a | 244 | a | 210 | а | | 1,2,3,7,8,9-HxCDF | 3.3 | а | 116 | | 39.6 | a | 43.1 | | | 1,2,3,4,6,7,8-HpCDF | 53.6 | а | 1,750 | | 648 | | 473 | | | 1,2,3,4,7,8,9-HpCDF | 4.16 | а | 263 | | 62.1 | | 67.2 | | | 1,2,3,4,6,7,8,9-OCDF | 181 | | 770 | а | 304 | а | 298 | a | | Total (pg) | 252 | | 6,703 | | 3,267 | | 3,058 | | | Total (ng/dscm) | 0.162 | | 4.88 | | 2.04 | | 1.80 | | | Total (ng/dscm @ 12% CO2) | 0.694 | | 20.9 | | 8.72 | | 7.72 | | | Total (lb/hr) | 7.50E-09 | | 2.25E-07 | | 9.42E-08 | | 8.36E-08 | | | Total 2,3,7,8-substituted dioxin/furan | | | | | | | | | | Conc. (ng/dscm @ 12% CO2) | 36.6 | | 54.0 | | 32.2 | | 26.3 | | | Emission rate (lb/hr) | 3.95E-07 | | 5.80E-07 | | 3.48E-07 | | 2.85E-07 | | a. None detected. value shown is the detection limit. "Totals" calculated using half the detection limit. TABLE 4-32. SITE D - 2,3,7,8-TCDD EQUIVALENTS RESULTS | | | | Run 10 | | | Run 11 | | | Run 12 | | |--------------------------------------|-----------|-------------|---|--------------|--|----------------------------|--------------|---|----------------------------|--------------| | | | | Outlet | | | Outlet | | | Outlet | | | | | Sample volu | Sample volume (dscm) = Stack flow rate (dscm/m) | 1.373
348 | Sample volume (dscm) =
Stack flow rate (dscm/m) | ne (dscm) =
te (dscm/m) | 1.605
350 | Sample volume (dscm) = Stack flow rate (dscm/m) | me (dscm) =
te (dscm/m) | 1.698
351 | | | ARB | Concentrati | ration CO2 (%) = | 2.8 | Concentration CO2 (%) = | n CO2 (%) = | 2.8 | Concentration CO2 (%) | n CO2 (%) = | 2.8 | | 1 | equiv. | Total | ; | Equiv. | Total | : | Equiv. | Total | | Equiv. | | Analyte | tactor | (bd) | (ug/dscm) | (ug/dscm) | (bd) | (ug/dscm) | (ug/dscm) | (bd) | (ug/dscm) | (ug/dscm) | | Dioxins | | | | | | | | | | | | 2,3,7,8-TCDD | _ | 26.4 | 0.0192 | 0.0192 | 8.16 | 0.0051 | 0.0051 | 10.4 å | 0.0061 | 0.0061 | | 1,2,3,7,8-PeCDD | _ | 217 | 0.1580 | 0.1580 | 157 | 0.0978 | 0.0978 | 117 | 0.0689 | 0.0689 | | 1,2,3,4,7,8-HxCDD | 0.03 | 252 | 0.1835 | 0.0055 | 192 | 0.1196 | 0.0036 | 124 ° | 0.0730 | 0.0022 | | 1,2,3,6,7,8-HxCDD | 0.03 | 574 | 0.4181 | 0.0125 | 454 | 0.2642 | 0.0079 | 261 | 0.1537 | 0.0046 | | 1,2,3,7,8,9-HxCDD | 0.03 | 200 | 0.5098 | 0.0153 | 512 | 0.3190 | 0.0096 | 306 | 0.1802 | 0.0054 | | 1,2,3,4,6,7,8-HpCDD | 0.03 | 3,360 | 2.4472 | 0.0734 | 2,130 | 1.3271 | 0.0398 | 1,490 | 0.8775 | 0.0263 | | ОСОО | 0.03 | 5,620 | 4.0932 | 0.1228 | 5,380 | 3.3520 | 0.1006 | 5,120 | 3.0153 | 0.0905 | | Furans | | | | | | | | | | | | | • | | | | | | | | | | | 2,3,7,8-TCDF | - | 2,230 | | 1.6242 | 1,350 | 0.8411 | 0.8411 | 1,330 | 0.7833 | 0.7833 | | 1,2,3,7,8-PeCDF | - | 314 | | 0.2287 | <u>4</u> | 0.1146 | 0.1146 | 195 | 0.1148 | 0.1148 | | 2,3,4,7,8-PeCDF | _ | 260 | | 0.4079 | 310 | 0.1931 | 0.1931 | 280 | 0.1649 | 0.1649 | | 1,2,3,4,7,8-HxCDF | 0.03 | 808 | | 0.0177 | 418 | 0.2604 | 0.0078 | 337 | 0.1985 | 0.0060 | | 1,2,3,6,7,8-HxCDF | 0.03 | 293 | 0.2134 | 0.0064 | 158 | 0.0984 | 0.0030 | 160 | 0.0942 | 0.0028 | | 2,3,4,6,7,8-HxCDF | 0.03 | 526 | 0.3831 | 0.0115 | 244 • | 0.1520 | 0.0046 | 210 | 0.1237 | 0.0037 | | 1,2,3,7,8,9-HxCDF | 0.03 | 116 | 0.0845 | 0.0025 | 39.6 | 0.0247 | 0.0007 | 43.1 | 0.0254 | 0.0008 | | 1,2,3,4,6,7,8-HpCDF | 0.03 | 1,750 | 1.2746 | 0.0382 | 648 | 0.4037 | 0.0121 | 473 | 0.2786 | 0.0084 | | 1,2,3,4,7,8,9-HpCDF | 0.03 | 263 | | 0.0057 | 62.1 | 0.0387 | 0.0012 | 67.2 | 0.0396 | 0.0012 | | OCDF | 0.03 | , 022 | 0.5608 | 0.0168 | 304 | 0.1894 | 0.0057 | 298 ª | 0.1755 | 0.0053 | | Total 2,3,7,8-TCDD | | | | | | | | | | | | equivalent concentration (ng/dscm) = | ation (ng | /dscm) = | | 2.5355 | | | 1.3434 | | | 1.2850 | | Total 2,3,7,8-TCDD equivalent | equivale | ant | | | | | | | | ٠ | | concentration @ 12% CO2 (ng/dscm) | % CO2 (| ng/dscm) = | | 10.9 | | | 5.76 | | | 5.51 | | Emission (lb/hr) = | | | | 1.17E-07 | | | 6.22E-08 | | | 5.97E-08 | | | | | | | | | | | | | a. Includes the detection limit value. "Totals" calculated using half the detection limit. TABLE 4-33. SITE D - PAHS EMISSIONS RESULTS FOR MM5-SV SAMPLES | Run 10 |) | Run 11 | | Run 12 | | Blank
train | | |---------------------------------|--------|--------------------------|---|-----------------------|------------|----------------|--------------------| | | | | | | | | | | me (dscm) 1.37 | | 1.605 | | 1.698 | | | | | te (dscm/m) 34 | | 350 | | 351 | | | | | n CO2 (%) 2. | 8 | 2.8 | | 2.8 | | | | | PAHs (ug) | | | | | | | | | 21. | 3 | 13.5 | | 17.9 | | 10.7 | | | | 1 a | 0.1 | а | 0.226 | | 0.107 | | | ne 0.27 | 6 | 0.245 | | 0.428 | | 0.188 | | | 0.50 | 3 | 0.445 | | 0.658 | | 0.266 | | | e 0.73 | 9 | 0.611 | | 1.35 | | 0.402 | | | | 1 a | 0.1 | а | 0.1 | а | 0.1 | а | | 0.30 | 5 | 0.192 | | 0.417 | | 0.157 | | | 0.25 | 7 | 0.168 | | 0.333 | | 0.152 | | | 0. | 1 a | 0.1 | а | 0.236 | | 0.1 | а | | acene 0.20 | 6 . | 0.154 | | 0.205 | | 0.159 | | | 0.17 | 5 | 0.149 | | 0.1 | а | 0.165 | | | ranthene 0. | 1 a | 0.1 | а | 0.1 | а | 0.1 | а | | ranthene 0. | 1 a | 0.1 | а | 0.1 | а | 0.1 | а | | ene 0.2 | 1 | 0.125 | | 0.1 | а | 0.201 | | | -cd)pyrene 0. | 1 a | 0.1 | а | 0.1 | а | 0.1 | а | | nthracene 0. | 1 a | 0.1 | а | 0.1 | а | 0.1 | a | | erylene 0. | 1 a | 0.1 | а | 0.1 | а | 0.1 | a | | (ug) 24. | 8 | 16.4 | | 22.6 | | 13.2 | _ | | (ug/dscm) 18. | 0 | 10.21 | | 13.3 | | 13.3 | | | (ug/dscm @ 12% CO2) 77. | 3 | 43.8 | | 56.9 | | 85.5 | | | (lb/hr) 0.00083 | 0 | 0.000473 | | 0.000617 | | 0.000409 | | | IRROGATE RECOVERY | | _ | | | | | | | | % | 73% | 5 | 98% | , | 92% | , | | e 63 | | 50% | | 92% | | 77% | | | RROGATE RECOVERY | | | | 0 = / 1 | | , | , | | ene 41 | % | 48% |) | 55% | , | 59% | | | hthene 69 | | 80% | | 91% | | 94% | | | e 71 | | 80% | | 91% | | 93% | | | threne 73 | | 81% | | 91% | | 90% | | | ene 70 | | 70% | | 91% | | 82% | | | thene 71 | | 80% | | 90% | | 89% | anthracene 66 ne 70 n)pyrene 66 | %
% | 81%
72%
78%
67% |) |) | 93%
96% | 93%
96% | 93% 84%
96% 91% | Note(a): Values shown are the detection limits which were calculated as 2.5 times the baseline noise levels. TABLE 4-34. SITE D - ANALYSIS RESULTS FOR MM5-MM (METALS) TRAIN | | Ag | As | Ba | ਲ | ວັ | J. | Hg | Mn | Z | æ | Se | Zn | |---------------------------|----------|----------|----------|---------------|-----------|---------|-----------|----------|---------|------------|----------|------------| | Run 10 | | | | | | | | | | | | | | Rinses and filter, ug | 33.9 | 402 | 41.0 | 337 | 58.1 | 759 | NA | 20.6 | 5,340 | 81.9 | 2,378 | <6.29 | | Nitric acid impingers, ug | <1.63 | <8.29 | 2.48 | <u>.</u>
8 | 3,13 | | 16.2 | 3.58 | 1.37 | 22.4 | 3.43 | 16.9 | | KMnO4 impingers, ug | Ϋ́ | NA
VA | N
A | Ą. | AN
AN | | 3.36 | AN
AN | ¥ | ĄZ | AN
AN | AN | | Total, ug | 33.865 | 402 | 43.5 | 338 | 61.2 | 761 | 19.6 | 24.1 | 5,341 | 104 | 2,382 | <23.2 | | Concentration, ug/dscm | 13.5 | 161 | 17.4 | 135 | 24.4 | | 7.81 | 9.64 | 2,132 | 41.7 | 951 | <9.26 | | Emissions, 1b/hr | 0.000646 | 0.00767 | 0.000830 | 0.00644 | 0.00117 | | 0.000373 | 0.000460 | 0.102 | 0.00199 | 0.0454 | < 0.000441 | | Run 11 | | | | | | | | | | | | | | Rinses and filter, ug | 25.5 | 239 | 35.7 | 336 | <10.5 | 361 | AN | 13.0 | 5,971 | 92.2 | 1,339 | <6.29 | | Nitric acid impingers, ug | <1.63 | <8.29 | 4.05 | 1.27 | 3.62 | 4.29 | 7.30 | 5.17 | 1.88 | 24.1 | 3.41 | 20.6 | | KMnO4 impingers, ug | Ą
Z | ΑN | AN | Ą. | ΑN | AN | 2.68 | Y
Y | AN
A | Ϋ́ | AN
AN | AN | | Total, ug | 25.45 | 239 | 39.7 | 337 | <14.1 | 365 | 96.6 | 18.1 | 5,972 | 116 | 1,342 | < 26.9 | | Concentration, ug/dscm | 8.38 | 78.7 | 13.1 | 111 | <4.64 | 120 | 3.29 | 5.97 | 1,967 | 38.3 | 442 | <8.86 | | Emissions, Ib/hr | 0.000385 | 0.00361 | 0.000601 | 0.00510 | <0.000213 | 0.00551 | 0.000151 | 0.000274 | 0.0903 | 0.00176 | 0.0203 | < 0.000406 | | Run 12 | | | | | | | | | | | | | | Rinses and filter, ug | 53.4 | 186 | 23.2 | 257 | <10.5 | 292 | Ϋ́ | 10.9 | 3,862 | 87.3 | 529 | < 6.29 | | Nitric acid impingers, ug | <1.63 | <8.29 | 2.19 | 0.401 | 2.74 | <1.54 | 4.40 | 4.23 | 0.807 | 17.1 | 2.49 | 7.15 | | KMnO4 impingers, ug | Ϋ́ | A
A | Ą
V | AN
AN | AN | AN | <0.668 | AN
A | Ą | AN. | Ā | AN
AN | | Total, ug | 53,425 | 186 | 25.3 | 257 | <13.2 | 292 | 4.40 | 15.1 | 3,863 | 1 0 | 532 | <13.4 | | Concentration, ug/dscm | 17.8 | 62.0 | 8.44 | 85.7 | <4.41 | 97.4 | 1.47 | 5.02 | 1,287 | 34.8 | 177 | <4.48 | | Emissions, Ib/hr | 0.000814 | 0.00284 | 0.000386 | 0.00392 | <0.000202 | 0.00446 | 0.0000671 | 0.000230 | 0.0589 | 0.00159 | 0.00811 | 0.000205 | | Blank train | | | | | | | | | | | | | | Rinses and filter, ug | <2.15 | 38.6 | 1.39 | 7.89 | <1.05 | 2.04 | Ϋ́ | 1.03 | 84.5 | 54.4 | 28.0 | < 6.29 | | Impingers 1-6, ug | <1.63 | <8.29 | 0.525 | 0.185 | 1.01 | <1.54 | AN
AN | 0.388 | <0.542 | 2.24 | < 2.24 | 2.87 | | Total, ug | <3.78 | <46.9 | 1.91 | 8.07 | < 2.06 | < 3.58 | 0000 | 1.42 | 84.5 | 56.6 | 28.0 | ×0.18 | NA = Not applicable. For Hg, this fraction was not analyzed due to holding time exceedance. Total mercury emissions are therefore
conservative. Continuous Emission Measurements. During the semivolatile and metals emission sampling, continuous measurements were conducted at the inlet and outlet locations for CO, SO_2 , NO_x , O_2 , and CO_2 . Summary data for those measurements are presented in Table 4-35. Computer-generated graphs of the real time measurements are included in Appendix B. ### 4.4 WIRE RECLAMATION FACILITY ### 4.4.1 Facility Description The wire reclamation facility sampled was a small facility which operated on a demand basis only. The facility recovers wire from electric motor stators and lead-covered power cable and is fueled with natural gas (Figure 4-5). Due to the small loads at this facility, it was not equipped with waste heat recovery systems. Air emissions are controlled by afterburners which are fueled by natural gas and operate between 1500° and 2000°F. ### 4.4.2 Sampling This facility only had samples of ash collected after the wire had been processed, i.e., any coating removed. The plant processed several kinds of wire on the pallets sampled. These wire types included copper wire coated with various materials such as plastic coating (about 1% of the wire by weight), aluminum (about 30%), and paper/cloth (about 20%). After the completion of three separate burns, each ash sample was collected from the residue remaining after the burning of coated wire. Grab samples of the coating residue ash were collected from the pallet containing the now bare wire. These ash samples were collected from the pallet after the material had cooled enough to be safely handled. A total of three samples were collected and then submitted to ARB for analysis. MRI-M\R9420-01 4-50 TABLE 4-35. SITE D -- CONTINUOUS EMISSION MEASUREMENTS | | | | | | | | | 12% CO ₂ | | |--------|-----|----------------|-----------------|------|-----------------|-----------------|-------|---------------------|-----------------| | Run 10 | | O ₂ | CO ₂ | со | SO ₂ | NO _x | со | SO ₂ | NO _x | | | Avg | 18.3 | 2.9 | 9.0 | .2 | 28.8 | 40.2 | .2 | 121.0 | | | Max | 20.6 | 4.2 | 29.7 | 4.1 | 51.5 | 239.2 | 14.1 | 202.6 | | | Min | 15.9 | 1.5 | 7.4 | -3.5 | .9 | 25.2 | -17.6 | 6.5 | | Run 11 | | O ₂ | CO ₂ | СО | SO ₂ | NO _x | СО | SO ₂ | NO _x | | | Avg | 17.2 | 2.8 | 10.0 | 4.0 | 15.8 | 42.5 | 16.0 | 71.7 | | | Max | 20.4 | 4.4 | 70.5 | 43.7 | 45.0 | 229.5 | 168.1 | 360.0 | | | Min | 10.9 | .0 | 6.6 | 5 | 3.2 | .0 | -2.9 | 13.6 | | Run 12 | | O ₂ | CO ₂ | СО | SO ₂ | NO _x | со | SO ₂ | NO _x | | · | Avg | 19.0 | 2.8 | 7.2 | 1.1 | 24.2 | 30.9 | 4.5 | 102.8 | | | Max | 22.2 | 3.6 | 9.0 | 15.3 | 42.1 | 42.8 | 61.6 | 168.6 | | | Min | 13.1 | 2.4 | 3.5 | -1.2 | 15.2 | 14.8 | -4.6 | 62.4 | Site E: Wire Reclamation Process Diagram Figure 4-5